Advanced Search+
Yifei LIU, Jiquan LI. Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport[J]. Plasma Science and Technology, 2024, 26(1): 015101. DOI: 10.1088/2058-6272/ad0c9b
Citation: Yifei LIU, Jiquan LI. Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport[J]. Plasma Science and Technology, 2024, 26(1): 015101. DOI: 10.1088/2058-6272/ad0c9b

Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport

More Information
  • Author Bio:

    Jiquan LI: lijq@swip.ac.cn

  • Corresponding author:

    Jiquan LI, lijq@swip.ac.cn

  • Received Date: February 11, 2023
  • Revised Date: September 05, 2023
  • Accepted Date: September 06, 2023
  • Available Online: November 13, 2023
  • Published Date: January 01, 2024
  • The effects of impurities on ion temperature gradient (ITG) driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons. The simulations use an extended fluid code (ExFC) based on a four-field gyro-Landau-fluid (GLF) model. The multispecies form of the normalized GLF equations is presented, which guarantees the self-consistent evolution of both bulk ions and impurities. With parametric profiles of the cyclone base case, well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles. For a fixed temperature profile, it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities, which is contrary to the linear and quasi-linear predictions. The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process, indicating that the destabilization of the outwardly peaked impurity profile is a transient state response. Furthermore, the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient, which is likely to be dominated by linear effects. These results suggest that the improvement in plasma confinement could be attributed to the impurities, most likely through adjusting both heat diffusivity and the critical temperature gradient.

  • [1]
    Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239 doi: 10.1103/RevModPhys.48.239
    [2]
    Wootton A J et al 1990 Phys. Fluids B: Plasma Phys. 2 2879 doi: 10.1063/1.859358
    [3]
    Wagner F and Stroth U 1993 Plasma Phys. Control. Fusion 35 1321 doi: 10.1088/0741-3335/35/10/002
    [4]
    Dimits A M et al 1996 Phys. Rev. Lett. 77 71 doi: 10.1103/PhysRevLett.77.71
    [5]
    Horton W 1999 Rev. Mod. Phys. 71 735 doi: 10.1103/RevModPhys.71.735
    [6]
    Isler R C 1984 Nucl. Fusion 24 1599 doi: 10.1088/0029-5515/24/12/008
    [7]
    Zhong W L et al 2016 Phys. Rev. Lett. 117 045001 doi: 10.1103/PhysRevLett.117.045001
    [8]
    McKee G et al 2000 Phys. Rev. Lett. 84 1922 doi: 10.1103/PhysRevLett.84.1922
    [9]
    Maddison G P et al 2003 Nucl. Fusion 43 49 doi: 10.1088/0029-5515/43/1/306
    [10]
    Xue G Q et al 2021 Nucl. Fusion 61 116048 doi: 10.1088/1741-4326/ac2874
    [11]
    Coppi B et al 1966 Phys. Rev. Lett. 17 377 doi: 10.1103/PhysRevLett.17.377
    [12]
    Tang W M, White R B and Guzdar P N 1980 Phys. Fluids 23 167 doi: 10.1063/1.862835
    [13]
    Dong J Q and Horton W 1995 Phys. Plasmas 2 3412 doi: 10.1063/1.871123
    [14]
    Guo W X, Wang L and Zhuang G 2017 Nucl. Fusion 57 056012 doi: 10.1088/1741-4326/aa6415
    [15]
    Kim K et al 2017 Phys. Plasmas 24 062302 doi: 10.1063/1.4984991
    [16]
    Hammett G W and Perkins F W 1990 Phys. Rev. Lett. 64 3019 doi: 10.1103/PhysRevLett.64.3019
    [17]
    Dorland W and Hammett G W 1993 Phys. Fluids B: Plasma Phys. 5 812 doi: 10.1063/1.860934
    [18]
    Beer M A and Hammett G W 1996 Phys. Plasmas 3 4046 doi: 10.1063/1.871538
    [19]
    Dimits A M et al 2000 Phys. Plasmas 7 969 doi: 10.1063/1.873896
    [20]
    Li H et al 2021 Plasma Sci. Technol. 23 115102 doi: 10.1088/2058-6272/ac15ec
    [21]
    Li H et al 2022 Nucl. Fusion 62 036014 doi: 10.1088/1741-4326/ac486b
    [22]
    Rosenbluth M N and Hinton F L 1998 Phys. Rev. Lett. 80 724 doi: 10.1103/PhysRevLett.80.724
    [23]
    Li J Q and Kishimoto Y 2008 Commun. Comput. Phys. 4 1245
    [24]
    Rewoldt G, Lin Z and Idomura Y 2007 Comput. Phys. Commun. 177 775 doi: 10.1016/j.cpc.2007.06.017
    [25]
    Wang L and Hahm T S 2009 Phys. Plasmas 16 062309 doi: 10.1063/1.3152601
    [26]
    Candy J and Waltz R E 2003 J. Comput. Phys. 186 545 doi: 10.1016/S0021-9991(03)00079-2
    [27]
    Du H R, Wang Z X and Dong J Q 2015 Phys. Plasmas 22 022506 doi: 10.1063/1.4907788
    [28]
    Li J et al 2019 Nucl. Fusion 59 076013 doi: 10.1088/1741-4326/ab0ee2
    [29]
    Han M K et al 2021 Nucl. Fusion 61 046010 doi: 10.1088/1741-4326/abcdb8
    [30]
    Li J et al 2021 Nucl. Fusion 61 126008 doi: 10.1088/1741-4326/ac2ca2
    [31]
    Lin Z et al 1999 Phys. Rev. Lett. 83 3645 doi: 10.1103/PhysRevLett.83.3645
    [32]
    Mantica P et al 2011 Phys. Rev. Lett. 107 135004 doi: 10.1103/PhysRevLett.107.135004
  • Related Articles

    [1]Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5
    [2]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [3]Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262
    [4]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [5]Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001
    [6]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [7]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [8]HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06
    [9]WANG Erhui (王二辉), S. MORITA, M. GOTO, DONG Chunfeng (董春凤). Observation of the Two-Dimensional Distribution of Impurity Line Emissions Using a Space-Resolved EUV Spectrometer in LHD[J]. Plasma Science and Technology, 2013, 15(2): 106-109. DOI: 10.1088/1009-0630/15/2/05
    [10]Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02
  • Cited by

    Periodical cited type(8)

    1. Xiao, W., Li, Y., Zhang, Y. et al. Recent Development of Fibrous Materials for Electrocatalytic Water Splitting. Applied Energy, 2025. DOI:10.1016/j.apenergy.2025.125809
    2. Wang, S., Wang, Y., Gao, M. et al. Aging Effect of Plasma-Treated Carbon Fiber Surface: From an Engineering Point. Coatings, 2024, 14(1): 80. DOI:10.3390/coatings14010080
    3. Li, J., Yuan, L., Wu, Z. et al. Synergetic surface modification of 3D braided carbon fiber-reinforced composites for enhancing mechanical strength. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.158189
    4. Sowmya, S., Vijaikanth, V. g-C3N4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS Omega, 2023, 8(36): 32940-32954. DOI:10.1021/acsomega.3c04347
    5. Rashed, A.O., Huynh, C., Merenda, A. et al. Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121475
    6. Jiang, J., Jin, B., Meng, L. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction | [基于电催化析氧反应的非贵金属催化剂研究进展]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380. DOI:10.13801/j.cnki.fhclxb.20220819.001
    7. Xu, J., Zhang, Y.-Q., Zhu, X.-B. et al. Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering | [利用缺陷工程提高碳毡电极对钒离子的氧化还原催化活性]. Journal of Central South University, 2022, 29(9): 2956-2967. DOI:10.1007/s11771-022-5129-z
    8. Mei, T., Gao, M., Wang, Y. et al. Effects of acid treatment and plasma micromachining on the surface properties of carbon fibers. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153261

    Other cited types(0)

Catalog

    Article views (56) PDF downloads (19) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return