Citation: | Long CHEN, Zuojun CUI, Weifu GAO, Ping DUAN, Zichen KAN, Congqi TAN, Junyu CHEN. Effect of ion stress on properties of magnetized plasma sheath[J]. Plasma Science and Technology, 2024, 26(2): 025001. DOI: 10.1088/2058-6272/ad0d4f |
In the plasma sheath, there is a significant gradient in ion velocity, resulting in strong stress on ions treated as a fluid. This aspect has often been neglected in previous sheath studies. This study is based on the Braginskii plasma transport theory and establishes a 1D3V sheath fluid model that takes into account the ion stress effect. Under the assumption that ions undergo both electric and diamagnetic drift in the presheath region, self-consistent boundary conditions, including the ion Bohm velocity, are derived based on the property of the Sagdeev pseudopotential. Furthermore, assuming that the electron velocity at the wall follows a truncated Maxwell distribution, the wall floating potential is calculated, leading to a more accurate sheath thickness estimation. The results show that ion stress significantly reduces the sheath thickness, enhances ion Bohm velocity, wall floating potential, and ion flux at the wall. It hinders the acceleration of ions within the sheath, leading to notable alterations in the particle density profiles within the sheath. Further research indicates that in ion stress, bulk viscous stress has the greatest impact on sheath properties.
[1] |
Lymberopoulos D P and Economou D J 1994 J. Vac. Sci. Technol. A 12 1229 doi: 10.1116/1.579300
|
[2] |
Conrads H and Schmidt M 2000 Plasma Sources Sci. Technol. 9 441 doi: 10.1088/0963-0252/9/4/301
|
[3] |
Chankin A V 1997 J. Nucl. Mater. 241–243 199 doi: 10.1016/S0022-3115(96)00505-3
|
[4] |
Gao Q D and Chen X P 2003 Phys. Plasmas 10 1389 doi: 10.1063/1.1562478
|
[5] |
Chen F F 1995 Phys. Plasmas 2 2164 doi: 10.1063/1.871477
|
[6] |
Kersten H et al 2001 Contrib. Plasma Phys. 41 598 doi: 10.1002/1521-3986(200111)41:6<598::AID-CTPP598>3.0.CO;2-Z
|
[7] |
Sheridan T E and Goree J 1991 Phys. Fluids B 3 2796 doi: 10.1063/1.859987
|
[8] |
Liu J Y, Wang Z X and Wang X G 2003 Phys. Plasmas 10 3032 doi: 10.1063/1.1584048
|
[9] |
Chen X P 1998 Phys. Plasmas 5 804 doi: 10.1063/1.872768
|
[10] |
White F M 2011 Fluid Mechanics 7th ed (New York: McGraw-Hill
|
[11] |
Landau L D and Lifshitz E M 1987 Fluid Mechanics 2nd ed (Oxford: Butterworth-Heinemann
|
[12] |
Batchelor G K 2000 An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press
|
[13] |
Chorin A J, Marsden J E 1993 A Mathematical Introduction to Fluid Mechanics 3rd ed (New York: Springer-Verlag
|
[14] |
Dhawan R and Malik H K 2021 Plasma Sci. Technol. 23 045402 doi: 10.1088/2058-6272/abeb03
|
[15] |
El Ghani O, Driouch I and Chatei H 2020 Phys. Plasmas 27 083701 doi: 10.1063/5.0010080
|
[16] |
Paul R et al 2020 Phys. Plasmas 27 063520 doi: 10.1063/5.0004796
|
[17] |
Moulick R, Adhikari S and Goswami K S 2019 Phys. Plasmas 26 043512 doi: 10.1063/1.5090537
|
[18] |
Li Y Z et al 2022 Phys. Rev. Lett. 128 085002 doi: 10.1103/PhysRevLett.128.085002
|
[19] |
Dhawan R and Malik H K 2020 Vacuum 177 109354 doi: 10.1016/j.vacuum.2020.109354
|
[20] |
Hatami M M 2021 Sci. Rep. 11 9531 doi: 10.1038/s41598-021-88894-1
|
[21] |
Basnet S and Khanal R 2019 AIP Adv. 9 095030 doi: 10.1063/1.5109102
|
[22] |
Sharma G et al 2020 Phys. Scr. 95 035605 doi: 10.1088/1402-4896/ab5548
|
[23] |
Dhawan R and Malik H K 2020 Chin. J. Phys. 66 560 doi: 10.1016/j.cjph.2020.06.007
|
[24] |
Liu J Y, Wang F and Sun J Z 2011 Phys. Plasmas 18 013506 doi: 10.1063/1.3543757
|
[25] |
Wang Z X et al 2004 J. Plasma Phys. 70 577 doi: 10.1017/S002237780400282X
|
[26] |
Ou J et al 2013 Phys. Plasmas 20 063502 doi: 10.1063/1.4811474
|
[27] |
Zhao X Y, Zhang B K and Wang C X 2020 Phys. Plasmas 27 113705 doi: 10.1063/5.0018339
|
[28] |
Dhawan R and Malik H K 2023 J. Appl. Phys. 133 043303 doi: 10.1063/5.0120616
|
[29] |
Dhawan R, Kumar M and Malik H K 2020 Phys. Plasmas 27 063515 doi: 10.1063/5.0003242
|
[30] |
Malik L and Tevatia A 2021 Defence Sci. J. 71 137 doi: 10.14429/dsj.71.15762
|
[31] |
Malik L et al 2021 Mater. Today: Proc. 38 191
|
[32] |
Guo S S et al 2020 Plasma Sci. Technol. 22 125301 doi: 10.1088/2058-6272/abb455
|
[33] |
Tang R X et al 2019 Phys. Plasmas 26 043509 doi: 10.1063/1.5091676
|
[34] |
Jung M et al 2018 Phys. Plasmas 25 013507 doi: 10.1063/1.5010713
|
[35] |
Takahashi Y et al 2020 J. Phys. D: Appl. Phys. 53 235203
|
[36] |
Wang T T, Li J J and Ma J X 2016 Phys. Plasmas 23 123519 doi: 10.1063/1.4972094
|
[37] |
Wang T T 2017 The effect of electron reflection and ion viscosity on magnetized plasma sheath PhD Thesis University of Science and Technology of China, Hefei, China (in Chinese)
|
[38] |
Li J J, Ma J X and Wei Z A 2013 Phys. Plasmas 20 063503 doi: 10.1063/1.4811479
|
[39] |
Wang T T, Ma J X and Wei Z A 2015 Phys. Plasmas 22 093505 doi: 10.1063/1.4930208
|
[40] |
Chen L et al 2022 Plasma Sci. Technol. 24 074011 doi: 10.1088/2058-6272/ac57fe
|
[41] |
Zou X et al 2020 Plasma Sci. Technol. 22 125001 doi: 10.1088/2058-6272/abb3dc
|
[42] |
Chen L et al 2023 Plasma Sci. Technol. 25 035003 doi: 10.1088/2058-6272/aca502
|
[43] |
Chen F F 1974 Introduction to Plasma Physics (New York: Plenum
|
[44] |
Braginskii S I 1965 Reviews of Plasma Physics (New York: Consultants Bureau
|
[45] |
Dhawan R and Malik H K 2020 J. Theor. Appl. Phys. 14 121 doi: 10.1007/s40094-020-00369-2
|
[1] | Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5 |
[2] | Rui LI, Qihan WANG, Fucheng LIU, Kuangya GAO, Xiaohan HOU, Mengmeng JIA, Qing LI, Weili FAN. Reconfigurable (4, 62) and (4, 82) Archimedean plasma photonic crystals in dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(6): 064008. DOI: 10.1088/2058-6272/ad341f |
[3] | Liting GUO, Yuyang PAN, Guanglin YU, Zhaoyang WANG, Kuangya GAO, Weili FAN, Lifang DONG. Controllable and tunable plasma photonic crystals through a combination of photonic crystal and dielectric barrier discharge patterns[J]. Plasma Science and Technology, 2023, 25(8): 085501. DOI: 10.1088/2058-6272/acb52b |
[4] | Yu MA(马宇), Hao ZHANG(张浩), Haifeng ZHANG(章海锋), Ting LIU(刘婷), Wenyu LI(李文煜). Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence[J]. Plasma Science and Technology, 2019, 21(1): 15001-015001. DOI: 10.1088/2058-6272/aade85 |
[5] | ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01 |
[6] | QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02 |
[7] | GUO Bin (郭斌), PENG Li (彭莉), QIU Xiaoming (邱孝明). Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field[J]. Plasma Science and Technology, 2013, 15(7): 609-613. DOI: 10.1088/1009-0630/15/7/01 |
[8] | S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10 |
[9] | S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09 |
[10] | Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396. |