Advanced Search+
Liang LIU, Deliang YU, Qian MA, Xiaofei HE, Maarten DE BOCK, Manfred von HELLERMANN, Michael WALSH, Wenjin CHEN, Xiaoxue HE, Yanling WEI, Neng ZHANG, Dong LI, Huiling WEI, the HL-2A Team. The tri-band high spectral resolution spectrometer with gratings in tandem for the charge-exchange recombination spectroscopy diagnostic system on HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(6): 065102. DOI: 10.1088/2058-6272/ad24f5
Citation: Liang LIU, Deliang YU, Qian MA, Xiaofei HE, Maarten DE BOCK, Manfred von HELLERMANN, Michael WALSH, Wenjin CHEN, Xiaoxue HE, Yanling WEI, Neng ZHANG, Dong LI, Huiling WEI, the HL-2A Team. The tri-band high spectral resolution spectrometer with gratings in tandem for the charge-exchange recombination spectroscopy diagnostic system on HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(6): 065102. DOI: 10.1088/2058-6272/ad24f5

The tri-band high spectral resolution spectrometer with gratings in tandem for the charge-exchange recombination spectroscopy diagnostic system on HL-2A tokamak

More Information
  • Author Bio:

    Deliang YU: yudl@swip.ac.cn

  • Corresponding author:

    Deliang YU, yudl@swip.ac.cn

  • Received Date: November 21, 2023
  • Revised Date: January 29, 2024
  • Accepted Date: January 31, 2024
  • Available Online: May 26, 2024
  • Published Date: May 28, 2024
  • Charge-exchange (CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high spectral resolution spectrometer has been developed for the charge-exchange recombination spectroscopy measurement on the HL-2A tokamak. The simultaneous measurements of He II (468.57 nm), C VI (529.1 nm), and Dα (656.1 nm accompanied by beam emission spectra) with an acquisition frequency up to 400 Hz are achieved by vertically binning the spectrum from each fiber in experiments. Initial results indicate that the system can provide radial profiles of not only ion temperature and rotation velocity, but also concentration of carbon. For the case of helium, the measurements for the ion temperature and rotation velocity are straightforward but the apparent concentration associated with the observed CX intensity is obviously too high. Modeling of the active He II CX feature including plume contributions needs to be carried out to extract the true helium concentration. The spectrometer could become a prototype for the ITER charge-exchange recombination spectroscopy diagnostic and the pilot experiments, as presented here, demonstrate the possibility of impurity concentrations measurements based on the combined measurement of local beam emission and charge-exchange recombination spectroscopy spectra.

  • The authors would like to express their gratitude to the NBI team of HL-2A for modulating the system, which encouraged the authors to step forward. This work was supported in part by National Natural Science Foundation of China (Nos. 12275070, 12205084, 12305236 and 11675050), and in part by the National Key Research and Development Program of China (Nos. 2022YFE03180200, 2022YFE03020001 and 2019YFE03010004), and Innovation Program of Southwestern Institute of Physics (No. 202301XWCX001).

    The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  • [1]
    Isler R C 1994 Plasma Phys. Control. Fusion 36 171 doi: 10.1088/0741-3335/36/2/001
    [2]
    Synakowski E J et al 1995 Phys. Rev. Lett. 75 3689 doi: 10.1103/PhysRevLett.75.3689
    [3]
    Wei Y L et al 2014 Rev. Sci. Instrum. 85 103503 doi: 10.1063/1.4897186
    [4]
    Kappatou A et al 2012 Rev. Sci. Instrum. 83 10D519 doi: 10.1063/1.4732847
    [5]
    Boileau A et al 1989 Plasma Phys. Control. Fusion 31 779 doi: 10.1088/0741-3335/31/5/006
    [6]
    Tunklev M et al 1999 Plasma Phys. Control. Fusion 41 985 doi: 10.1088/0741-3335/41/8/305
    [7]
    von Hellermann M G et al 2008 AIP Conf. Proc. 988 165 doi: 10.1063/1.2905060
    [8]
    Hawkes N C et al 2018 Rev. Sci. Instrum. 89 10D113 doi: 10.1063/1.5037639
    [9]
    Bespamyatnov I O et al 2010 Rev. Sci. Instrum. 81 10D709 doi: 10.1063/1.3475707
    [10]
    Krupin V A et al 2013 Plasma Phys. Rep. 39 632 doi: 10.1134/S1063780X13070040
    [11]
    Klyuchnikov L A et al 2016 Rev. Sci. Instrum. 87 053506 doi: 10.1063/1.4949498
    [12]
    Tugarinov S N et al 2016 Instrum. Exp. Tech. 59 104 doi: 10.1134/S0020441216010152
    [13]
    Krupin V A et al 2015 Phys. Atom. Nucl. 78 1164 doi: 10.1134/S1063778815100051
    [14]
    Jaspers R J E et al 2012 Rev. Sci. Instrum. 83 10D515 doi: 10.1063/1.4732058
    [15]
    Viezzer E et al 2012 Rev. Sci. Instrum. 83 103501 doi: 10.1063/1.4755810
    [16]
    Arns J A Holographic transmission gratings improve spectroscopy and ultrafast laser performances In: Proceedings of the SPIE 2404, Diffractive and Holographic Optics Technology II San Jose: SPIE 1995: 174
    [17]
    Bell R E 2004 Rev. Sci. Instrum. 75 4158 doi: 10.1063/1.1787601
    [18]
    Liu L et al 2020 Plasma Fusion Res. 15 2402055 doi: 10.1585/pfr.15.2402055
    [19]
    Ida K et al 2019 Rev. Sci. Instrum. 90 093503 doi: 10.1063/1.5097030
    [20]
    Yu D L et al 2009 Fusion Sci. Technol. 56 1521 doi: 10.13182/FST09-A9255
    [21]
    Baylor L R et al 2004 Phys. Plasmas 11 3100 doi: 10.1063/1.1710900
    [22]
    Kim J et al 1994 Phys. Rev. Lett. 72 2199 doi: 10.1103/PhysRevLett.72.2199
    [23]
    von Hellermann M et al 2019 Atoms 7 30 doi: 10.3390/atoms7010030
    [24]
    Kappatou A et al 2018 Plasma Phys. Control. Fusion 60 055006 doi: 10.1088/1361-6587/aab25a
  • Related Articles

    [1]Jing ZHANG, Shurong YE, Tianxu LIU, Anbang SUN. 1d3v PIC/MCC simulation of dielectric barrier discharge dynamics in hydrogen sulfide[J]. Plasma Science and Technology, 2022, 24(2): 025401. DOI: 10.1088/2058-6272/ac3d7a
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [5]Siyin ZHOU (周思引), Xueke CHE (车学科), Wansheng NIE (聂万胜), Di WANG (王迪). Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process[J]. Plasma Science and Technology, 2018, 20(6): 65507-065507. DOI: 10.1088/2058-6272/aaac77
    [6]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [7]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [10]HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688.
  • Cited by

    Periodical cited type(4)

    1. Yang, X., Wei, L., Jiang, W. et al. Start-up process of ion optics in ion thrusters. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.111875
    2. Liu, Y., Sun, H., Fan, Z. et al. Pulsed discharge plasma induced hydrogenation of aromatic compound in heavy oil: Reaction mechanism upon impact by operating conditions. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.10.015
    3. Li, J., Li, W., Wei, L. et al. Newly designed ignition circuit to improve the ignition reliability of Hall thruster. AIP Advances, 2022, 12(5): 055112. DOI:10.1063/5.0086662
    4. Fei, L., Zhao, B., Liu, X. et al. Application study on plasma ignition in aeroengine strut-cavity-injector integrated afterburner. Plasma Science and Technology, 2021, 23(10): 105504. DOI:10.1088/2058-6272/ac183c

    Other cited types(0)

Catalog

    Figures(9)

    Article views (24) PDF downloads (24) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return