Advanced Search+
HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688.
Citation: HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688.

PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum

Funds: Supported by the National High Technology Research and Development Program of China
More Information
  • Received Date: July 22, 2011
  • In order to understand the physical mechanism of multipactor discharge on dielectric window surface under High Power Microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-in-cell (PIC) Monte Carlo (MC) is built in this paper. The influences of microwave electromagnetic field and electrostatic field from dielectric surface charging are simultaneously considered in this model. During the simulation, the emission velocity and angle distribution of secondary electrons from the dielectric surface are taken into account. The movement trajectories of electron clusters under complex field excitation are obtained. The influences of emergence angle and microwave electromagnetic parameters on the electron movement are analyzed. It is found that the emergence angle of electrons from the surface has significant effect on its movement, and both the impact energy and return time of electrons oscillate periodically with the phase of microwave field. The number of secondary electrons and induced electrostatic field from multipactoring are also investigated. The results reveal that both values oscillate periodically at twice the microwave frequency, which is due to the electron impact energy oscillating with microwave period. A schematic diagram is proposed to explain the periodical oscillation phenomena.
  • Related Articles

    [1]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [2]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [3]Mohamed MOSTAFAOUI, Djilali BENYOUCEF. Electrical model parameters identification of radiofrequency discharge in argon through 1D3V/PIC-MC model[J]. Plasma Science and Technology, 2018, 20(9): 95401-095401. DOI: 10.1088/2058-6272/aac3cf
    [4]Adem ACIR, Esref BAYSAL. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine[J]. Plasma Science and Technology, 2018, 20(7): 75601-075601. DOI: 10.1088/2058-6272/aab3c4
    [5]Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f
    [6]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [7]DING Xuecheng (丁学成), ZHANG Zicai (张子才), LIANG Weihua (梁伟华), CHU Lizhi (褚立志), DENG Zechao (邓泽超), WANG Yinglong (王英龙). Monte Carlo Simulation of Laser-Ablated Particle Splitting Dynamic in a Low Pressure Inert Gas[J]. Plasma Science and Technology, 2016, 18(6): 641-646. DOI: 10.1088/1009-0630/18/6/10
    [8]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [9]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [10]WU Yongpeng(吴永鹏), TANG Bin(汤彬). Monte-Carlo Simulation of Response Functions for Natural Gamma-rays in LaBr3 Detector System with Complex Borehole Configurations[J]. Plasma Science and Technology, 2012, 14(6): 481-487. DOI: 10.1088/1009-0630/14/6/10

Catalog

    Article views (553) PDF downloads (424) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return