Advanced Search+
Lanping WANG, Lanlan NIE, Xinpei LU. Effect of gas components on the post-discharge temporal behavior of OH and O of a non-equilibrium atmospheric pressure plasma driven by nanosecond voltage pulses[J]. Plasma Science and Technology, 2024, 26(5): 055402. DOI: 10.1088/2058-6272/ad2ce0
Citation: Lanping WANG, Lanlan NIE, Xinpei LU. Effect of gas components on the post-discharge temporal behavior of OH and O of a non-equilibrium atmospheric pressure plasma driven by nanosecond voltage pulses[J]. Plasma Science and Technology, 2024, 26(5): 055402. DOI: 10.1088/2058-6272/ad2ce0

Effect of gas components on the post-discharge temporal behavior of OH and O of a non-equilibrium atmospheric pressure plasma driven by nanosecond voltage pulses

More Information
  • OH radicals and O atoms are two of the most important reactive species of non-equilibrium atmospheric pressure plasma (NAPP), which plays an important role in applications such as plasma medicine. However, experimental studies on how the gas content affects the post-discharge temporal evolutions of OH and O in the noble gas ns-NAPP are very limited. In this work, the effect of the percentages of O2, N2, and H2O on the amounts of OH and O productions and their post-discharge temporal behaviors in ns-NAPP is investigated by laser-induced fluorescence (LIF) method. The results show that the productions of OH and O increase and then decrease with the increase of O2 percentage. Both OH and O densities reach their maximum when about 0.8% O2 is added. Further increase of the O2 concentration results in a decrease of the initial densities of both OH and O, and leads to their faster decay. The increase of N2 percentage also results in the increase and then decrease of the OH and O densities, but the change is smaller. Furthermore, when the H2O concentration is increased from 100 to 3000 ppm, the initial OH density increases slightly, but the OH density decays much faster, while the initial density of O decreases with the increase of the H2O concentration. After analysis, it is found that OH and O are mainly produced through electron collisional dissociation. O(1D) is critical for OH generation. O3 accelerates the consumption processes of OH and O at high O2 percentage. The addition of H2O in the NAPP considerably enhances the electronegativity, while it decreases the overall plasma reactivity, accelerates the decay of OH, and reduces the O atom density.

  • [1]
    Tian L Q et al 2011 Appl. Surf. Sci. 257 7113 doi: 10.1016/j.apsusc.2011.03.064
    [2]
    Ii E G et al 2010 Plasma Process. Polym. 7 482 doi: 10.1002/ppap.200900113
    [3]
    Cullen P J et al 2018 Plasma Process. Polym. 15 1700085 doi: 10.1002/ppap.201700085
    [4]
    Brandenburg R et al 2019 Plasma Process. Polym. 16 1700238 doi: 10.1002/ppap.201700238
    [5]
    Xu H B et al 2019 J. Phys. D: Appl. Phys. 52 395201 doi: 10.1088/1361-6463/ab273d
    [6]
    Li X C et al 2020 Appl. Phys. Lett. 117 134102 doi: 10.1063/5.0027061
    [7]
    Pinchuk M E et al 2019 Appl. Phys. Lett. 114 194103 doi: 10.1063/1.5099968
    [8]
    Weltmann K D et al 2019 Plasma Process. Polym. 16 1800118 doi: 10.1002/ppap.201800118
    [9]
    Ning W J et al 2017 Phys. Plasmas 24 073509 doi: 10.1063/1.4990707
    [10]
    Norberg S A et al 2019 J. Phys. D: Appl. Phys. 52 015201 doi: 10.1088/1361-6463/aae41e
    [11]
    Wu F et al 2018 J. Appl. Phys. 123 123301 doi: 10.1063/1.5016203
    [12]
    Weltmann K D and Von Woedtke T 2017 Plasma Phys. Control. Fusion 59 014031 doi: 10.1088/0741-3335/59/1/014031
    [13]
    Xu Z M et al 2020 Plasma Sci. Technol. 22 103001 doi: 10.1088/2058-6272/ab9ddd
    [14]
    Huang B D et al 2020 Plasma Sources Sci. Technol. 29 044001 doi: 10.1088/1361-6595/ab7854
    [15]
    Lu X et al 2016 Phys. Rep. 630 1 doi: 10.1016/j.physrep.2016.03.003
    [16]
    Takeda K et al 2017 J. Phys. D: Appl. Phys. 50 195202 doi: 10.1088/1361-6463/aa6555
    [17]
    Lin L and Keidar M 2021 Appl. Phys. Rev. 8 011306 doi: 10.1063/5.0022534
    [18]
    Liu X Y et al 2014 Phys. Plasmas 21 093513 doi: 10.1063/1.4895496
    [19]
    Shao T et al 2018 High Volt. 3 14 doi: 10.1049/hve.2016.0014
    [20]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018 doi: 10.1088/0963-0252/19/2/025018
    [21]
    Tschiersch R et al 2014 J. Phys. D: Appl. Phys. 47 365204 doi: 10.1088/0022-3727/47/36/365204
    [22]
    Bourdon A et al 2016 Plasma Sources Sci. Technol. 25 035002 doi: 10.1088/0963-0252/25/3/035002
    [23]
    Yang D Z et al 2012 Plasma Sources Sci. Technol. 21 035004 doi: 10.1088/0963-0252/21/3/035004
    [24]
    Sun B W et al 2019 Plasma Sources Sci. Technol. 28 035006 doi: 10.1088/1361-6595/aaf8e1
    [25]
    Murakami T et al 2014 Plasma Sources Sci. Technol. 23 025005 doi: 10.1088/0963-0252/23/2/025005
    [26]
    Gaens W V and Bogaerts A 2013 J. Phys. D: Appl. Phys. 46 275201 doi: 10.1088/0022-3727/46/27/275201
    [27]
    Schröter S et al 2020 Plasma Sources Sci. Technol. 29 105001 doi: 10.1088/1361-6595/abab55
    [28]
    Brisset A et al 2021 J. Phys. D: Appl. Phys. 54 285201 doi: 10.1088/1361-6463/abefec
    [29]
    Verreycken T and Bruggeman P J 2014 Plasma Chem. Plasma Process. 34 605 doi: 10.1007/s11090-014-9523-7
    [30]
    Ono R, Zhang X and Komuro A 2020 J. Phys. D: Appl. Phys. 53 425201 doi: 10.1088/1361-6463/ab98c3
    [31]
    Jiang C and Carter C 2014 Plasma Sources Sci. Technol. 23 065006 doi: 10.1088/0963-0252/23/6/065006
    [32]
    Ono R et al 2005 J. Phys. D: Appl. Phys. 38 2812 doi: 10.1088/0022-3727/38/16/011
    [33]
    Stancu G et al Two photon absorption laser induced fluorescence study of repetitively pulsed nanosecond discharges in atmospheric pressure air In: 39th Plasmadynamics and Lasers Conference Washington: AIAA 2008
    [34]
    Verreycken T et al 2013 J. Phys. D: Appl. Phys. 46 464004 doi: 10.1088/0022-3727/46/46/464004
    [35]
    Salmon J T and Laurendeau N M 1985 Appl. Opt. 24 65 doi: 10.1364/AO.24.000065
    [36]
    Verreycken T et al 2013 Plasma Sources Sci. Technol. 22 055014 doi: 10.1088/0963-0252/22/5/055014
    [37]
    Dilecce G et al 2015 Plasma Sources Sci. Technol. 24 034007 doi: 10.1088/0963-0252/24/3/034007
    [38]
    Rensberger K J, Jeffries J B and Crosley D R 1989 J. Chem. Phys. 90 2174 doi: 10.1063/1.456671
    [39]
    Van Gessel A F H, Van Grootel S C and Bruggeman P J 2013 Plasma Sources Sci. Technol. 22 055010 doi: 10.1088/0963-0252/22/5/055010
    [40]
    Niemi K, Der Gathen V S V and Döbele H F 2005 Plasma Sources Sci. Technol. 14 375 doi: 10.1088/0963-0252/14/2/021
    [41]
    McDermid I S and Laudenslager J B 1982 J. Quant. Spectrosc. Radiat. Transfer 27 483 doi: 10.1016/0022-4073(82)90100-5
    [42]
    Goehlich A, Kawetzki T and Döbele H F 1998 J. Chem. Phys. 108 9362 doi: 10.1063/1.476388
    [43]
    Kushner M J 1993 J. Appl. Phys. 74 6538 doi: 10.1063/1.355115
    [44]
    Itikawa Y and Mason N 2005 J. Phys. Chem. Ref. Data 34 1 doi: 10.1063/1.1799251
    [45]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci. Technol. 19 045025 doi: 10.1088/0963-0252/19/4/045025
    [46]
    Kraemer W P, Špirko V and Juřek M 1995 Chem. Phys. Lett. 236 177 doi: 10.1016/0009-2614(95)00187-9
    [47]
    Murakami T et al 2012 Plasma Sources Sci. Technol. 22 015003 doi: 10.1088/0963-0252/22/1/015003
    [48]
    Liu D X et al 2010 Plasma Process. Polym. 7 846 doi: 10.1002/ppap.201000049
    [49]
    Herron J T and Green D S 2001 Plasma Chem. Plasma Process. 21 459 doi: 10.1023/A:1011082611822
    [50]
    Sankaranarayanan R, Pashaie B and Dhali S K 2000 Appl. Phys. Lett. 77 2970 doi: 10.1063/1.1324002
    [51]
    Lazarou C et al 2019 J. Phys. D: Appl. Phys. 52 195203 doi: 10.1088/1361-6463/ab06cd
    [52]
    Stafford D S and Kushner M J 2004 J. Appl. Phys. 96 2451 doi: 10.1063/1.1768615
  • Related Articles

    [1]Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3
    [2]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [3]Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8
    [4]Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592
    [5]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [6]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [7]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [8]DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04
    [9]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [10]SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14
  • Cited by

    Periodical cited type(13)

    1. Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013
    2. Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203
    3. Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450
    4. Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6
    5. Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148
    6. Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082
    7. Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935
    8. Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459
    9. Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612
    10. Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
    11. Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607
    12. Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818
    13. Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w

    Other cited types(0)

Catalog

    Article views (21) PDF downloads (11) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return