Advanced Search+
Liang GUO, Xin LI, Qi LI, Sanwei LI, Xin HU, Jin LI, Bo DENG, Keli DENG, Qiangqiang WANG, Zhurong CAO, Lifei HOU, Xingsen CHE, Huabing DU, Tao XU, Xiaoan HE, Zhichao LI, Xiaohua JIANG, Wei JIANG, Chunyang ZHENG, Wudi ZHENG, Peng SONG, Yongkun DING, Dong YANG, Jiamin YANG. Studies on the motion and radiation of interior plasmas in gas-filled hohlraums with different laser entrance hole sizes[J]. Plasma Science and Technology, 2024, 26(7): 075201. DOI: 10.1088/2058-6272/ad3b9b
Citation: Liang GUO, Xin LI, Qi LI, Sanwei LI, Xin HU, Jin LI, Bo DENG, Keli DENG, Qiangqiang WANG, Zhurong CAO, Lifei HOU, Xingsen CHE, Huabing DU, Tao XU, Xiaoan HE, Zhichao LI, Xiaohua JIANG, Wei JIANG, Chunyang ZHENG, Wudi ZHENG, Peng SONG, Yongkun DING, Dong YANG, Jiamin YANG. Studies on the motion and radiation of interior plasmas in gas-filled hohlraums with different laser entrance hole sizes[J]. Plasma Science and Technology, 2024, 26(7): 075201. DOI: 10.1088/2058-6272/ad3b9b

Studies on the motion and radiation of interior plasmas in gas-filled hohlraums with different laser entrance hole sizes

More Information
  • An experiment on 100 kJ laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums. These hohlraums are designed to possess one open end and one laser entrance hole (LEH) with different diameters, which would or not result in the blocking of the LEH. An x-ray streak camera that is set at 16 degrees with respect to the hohlraum axis is applied to acquire the time-resolved x-ray images from the open end. Based on the images, we can study the evolutions of the wall plasma, corona bubble plasma and LEH plasma simultaneously through an equivalent view field of hohlraum interior. Multi-group flat response x-ray detectors are applied to measure the x-ray fluxes. In order to understand these characteristics, our two-dimensional radiation hydrodynamic code is used to simulate the experimental results. For the accuracy of reproduction, dielectronic recombination and two parameter corrections are applied in our code. Based on the comparison between experiments and simulations, we quantitatively understand the blocking process of LEH and the motion effects of other plasmas. The calibrated code is beneficial to design the gas-filled hohlraum in a nearby parameter space, especially the limit size of LEH.

  • This work was supported by National Natural Science Foundation of China (Nos. 12075219, 12105269 and 12175210). The authors give thanks to the operation group of BSRF and 100 kJ laser facility for their laborious work and close collaboration.

  • [1]
    Nuckolls J H et al 1972 Nature(London) 239 139 doi: 10.1038/239139a0
    [2]
    Hurricane O A et al 2023 Rev. Mod. Phys. 95 025005 doi: 10.1103/RevModPhys.95.025005
    [3]
    Moody J D et al 2014 Phys. Plasmas 21 056317 doi: 10.1063/1.4876966
    [4]
    Lindl J D et al 2014 Phys. Plasmas 21 020501 doi: 10.1063/1.4865400
    [5]
    Betti R et al 2016 Nature Physics 12 435 doi: 10.1038/nphys3736
    [6]
    Guo L et al 2019 Nucl. Fusion 59 016002 doi: 10.1088/1741-4326/aae8bc
    [7]
    Zhao H et al 2019 Matter Radiat. Extremes 4 055201 doi: 10.1063/1.5090971
    [8]
    Delamater N D et al 1996 Phys. Plasmas 3 2022−2028 doi: 10.1063/1.871999
    [9]
    Milovich J L et al 2016 Phys. Plasmas 23 032701 doi: 10.1063/1.4941979
    [10]
    Doppner T et al 2015 Phys. Rev. Lett. 115 055001 doi: 10.1103/PhysRevLett.115.055001
    [11]
    Admendt P et al 2014 Phys. Plasmas 21 112703 doi: 10.1063/1.4901195
    [12]
    Farmer W A et al 2017 Phys. Plasmas 24 052703 doi: 10.1063/1.4983140
    [13]
    Hall G N et al 2017 Phys. Plasmas 24 052706 doi: 10.1063/1.4983142
    [14]
    Ralph J E et al 2018 Phys. Plasmas 25 082701 doi: 10.1063/1.5023008
    [15]
    Lan K et al 2014 Phys. Plasmas 21 052704 doi: 10.1063/1.4878835
    [16]
    Schneider M B et al 2015 Phys. Plasmas 22 122705 doi: 10.1063/1.4937369
    [17]
    Dewald E L et al 2005 Phys. Rev. Lett. 95 215004 doi: 10.1103/PhysRevLett.95.215004
    [18]
    Chen Y H et al 2022 Matter Radiat. Extremes 7 065901 doi: 10.1063/5.0102447
    [19]
    Moore et al 2014 Phys. Plasmas 21 063303 doi: 10.1063/1.4880558
    [20]
    MacLaren S A et al 2014 Phys. Rev. Lett. 112 105003 doi: 10.1103/PhysRevLett.112.105003
    [21]
    Chen H et al 2020 Phys. Plasmas 27 022702 doi: 10.1063/1.5128501
    [22]
    Pei W B 2007 Commun. Comput. Phys. 2 255
    [23]
    Yong H et al 2013 Commun. Theor. Phys. 59 737 doi: 10.1088/0253-6102/59/6/15
    [24]
    Yu J et al 2016 Rev. Sci. Instrum. 87 123506 doi: 10.1063/1.4971847
    [25]
    Li Z C et al 2010 Rev. Sci. Instrum. 81 073504 doi: 10.1063/1.3460269
    [26]
    Li Z C et al 2011 Rev. Sci. Instrum. 82 106106 doi: 10.1063/1.3657158
    [27]
    Guo L et al 2012 Meas. Sci. Technol. 23 065902 doi: 10.1088/0957-0233/23/6/065902
    [28]
    Guo L et al 2016 Phys. Plasmas 23 092709 doi: 10.1063/1.4962519
    [29]
    Zou S Y et al 2013 Rev. Sci. Instrum. 84 093508 doi: 10.1063/1.4821984
    [30]
    Zha W Y et al 2018 Rev. Sci. Instrum. 89 013501 doi: 10.1063/1.5005501
    [31]
    Gong T et al 2019 Matter Radiat. Extremes 4 055202 doi: 10.1063/1.5092446
    [32]
    McDonald J W et al 2004 Rev. Sci. Instrum. 75 3753 doi: 10.1063/1.1788871
    [33]
    Huo W Y et al 2010 Phys. Plasmas 17 123114 doi: 10.1063/1.3526599
    [34]
    Gu P J et al 1999 High Power Laser and Part. Beams 11 78
    [35]
    Dewald D L et al 2008 Phys. Plasmas 15 072706 doi: 10.1063/1.2943700
    [36]
    Olsen R E et al 2012 Phys. Plasmas 19 053301 doi: 10.1063/1.4704795
  • Related Articles

    [1]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [2]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [3]Guilu ZHANG (张桂炉), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Xuemei WU (吴雪梅), Lanjian ZHUGE (诸葛兰剑), Hantao JI (吉瀚涛). Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies[J]. Plasma Science and Technology, 2018, 20(8): 85603-085603. DOI: 10.1088/2058-6272/aac014
    [4]Juan YANG (杨涓), Yuliang FU (付瑜亮), Xianchuang LIU (刘宪闯), Haibo MENG (孟海波), Yizhou JIN (金逸舟). Bended probe diagnostics of the plasma characteristics within an ECR ion source with a rectangular waveguide[J]. Plasma Science and Technology, 2018, 20(8): 85402-085402. DOI: 10.1088/2058-6272/aabb9f
    [5]H SOBHANI, H R SABOUHI, S FEILI, E DADAR. Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide[J]. Plasma Science and Technology, 2017, 19(10): 105504. DOI: 10.1088/2058-6272/aa8089
    [6]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [7]XIAO Jixiong(肖集雄), CHEN Shixiu(陈仕修), TIAN Wei(田微), CHEN Kun(陈堃). Influence of the Beam Self-Fields on the Dispersion Characteristics of EM Waves in a Dielectric Waveguide Filled with Plasma[J]. Plasma Science and Technology, 2014, 16(1): 1-5. DOI: 10.1088/1009-0630/16/1/01
    [8]FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
    [9]SHI Xingjian (侍行剑), HU Yemin (胡业民), GAO Zhe (高喆). Optimization of Lower Hybrid Current Drive Efficiency for EAST Plasma with Non-Circular Cross Section and Finite Aspect-Ratio[J]. Plasma Science and Technology, 2012, 14(3): 215-221. DOI: 10.1088/1009-0630/14/3/06
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.

Catalog

    Figures(7)  /  Tables(1)

    Article views (77) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return