Processing math: 38%
Advanced Search+
Hyun-Su JUN, Yat Fung TSANG, Jae Ok YOO, Navab SINGH. Theoretical study of particle and energy balance equations in locally bounded plasmas[J]. Plasma Science and Technology, 2024, 26(12): 125404. DOI: 10.1088/2058-6272/ad7df3
Citation: Hyun-Su JUN, Yat Fung TSANG, Jae Ok YOO, Navab SINGH. Theoretical study of particle and energy balance equations in locally bounded plasmas[J]. Plasma Science and Technology, 2024, 26(12): 125404. DOI: 10.1088/2058-6272/ad7df3

Theoretical study of particle and energy balance equations in locally bounded plasmas

More Information
  • In this study, new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas. Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls. However, in industrial plasma reactors for semiconductor manufacturing, the plasma is partially confined by internal reactor structures. We predict the effect of the open boundary area (AL,eff) and ion escape velocity (ui) on electron temperature and density by developing new particle and energy balance equations. Theoretically, we found a low ion escape velocity (ui/uB0.2) and high open boundary area (AL,eff/AT,eff0.6) to result in an approximately 38% increase in electron density and an 8% decrease in electron temperature compared to values in a fully bounded reactor. Additionally, we suggest that the velocity of ions passing through the open boundary should exceed ωpiλDe under the condition E02(Φ/λDe)2.

  • Conservation laws are the most fundamental principles in physics, dictating that physical quantities such as energy, momentum, charge, and others remain conserved before and after physical or chemical reactions [1, 2]. In the plasma reactors used for manufacturing semiconductors and display devices, these conservation laws play a crucial role and are closely connected to determining the characteristics of the plasma, including electron density and electron temperature. In general, the supplied energy for plasma discharge and the total number of plasma particles formed inside the reactor are always conserved. Equations describing these conserved quantities are known as the energy and particle balance equations [37]. For the energy balance equation, the total radio frequency (RF) power Pabs supplied to create plasma discharge must equal to the total energy lost by ion-electron pairs, and this is expressed as:

    Pabs=en0uBAL,effεT. (1)

    Here, n0 represents the electron density, uB represents the Bohm velocity, and AL,eff and εT respectively show the effective area for particle loss and the total energy lost by ion–electron pairs. Using equation (1), it is possible to determine the electron density based on the Pabs, uB, AL,eff, and εT [8, 9].

    The particle balance equation is based on the premise that the total ionization inside the reactor must equal to the total surface loss inside the reactor, with this condition expressed as:

    n0uBAL,eff=Kizngn0V0. (2)

    Here, Kiz represents the volume ionization rate of the gas, ng is the number density of neutral gas, and V0 denotes the volume of the reactor. Using equation (2), it is possible to determine the electron temperature of the plasma. The energy and particle balance equations provide the simplest approach to determine the electron densities and temperatures inside a plasma reactor, as it is based on the analysis of physical conservation quantities within the reactor.

    Despite the importance of predicting both electron temperature and density, applying classical energy and particle balance equations to industrial plasma reactors [10] comes with practical challenges. In plasma etchers used for semiconductor processing, reactor interiors are designed to not fully confine plasma but to allow partial diffusion through components such as plasma confine rings [1113] and gas baffles [14, 15]. Classical energy and particle balance equations do not include the necessary variables (e.g., open boundary area, ion escape velocity) to effectively model these heterogeneous plasma boundaries. For these reasons, equations (1) and (2) cannot be applied to industrial plasma reactors. To address these challenges, it is essential to develop new equations that incorporate variables associated with heterogeneous plasma boundaries.

    In this study, we formulated new energy and particle balance equations for heterogeneous plasma boundaries. Using these equations, we analyzed variations in electron temperature and density based on the open boundary area (AL,eff) and ion escape velocity (ui). At low ion escape velocities (ui/uB0.2) and high open boundary areas (AL,eff/AT,eff0.6), we found an approximately 38% increase in electron density and an 8% decrease in electron temperature compared to values for a fully bounded reactor. We also analyzed the electric potential equation around the open plasma boundary to determine the ion loss velocity in the energy and particle balance equations. Our analysis revealed that the ion escape velocity through the open plasma boundary exceeds the product of the ion plasma frequency (ωpi) and the electron Debye length (λDe). The variables utilized to describe the energy and particle balance equations in this study are summarized in table 1.

    Table  1.  Parameter symbols and abbreviations.
    Symbols Descriptions Dimensions
    AL Bounded reactor wall area m2
    AL Unbounded reactor wall area m2
    AT AL+AL m2
    AL,eff hAL m2
    AL,eff hAL m2
    AT,eff Total effective wall loss area: hAL+hAL m2
    deff Effective plasma size: V0/AL,eff m
    diz uiz/νiz0 m
    e Elementary charge C
    E0 Electric field at an open boundary V·m−1
    Es Electric field at a sheath edge V·m−1
    h ns/n0 -
    h ni/n0 -
    Kel Elastic rate constant m3·s−1
    Kex Excitation rate constant m3·s−1
    Kiz Ionization rate constant: Kiz0exp(εiz/Te) m3·s−1
    Kiz0 Preexponential factor m3·s−1
    me Electron mass kg
    Mi Ion mass kg
    n(x,y,z) Spatial electron density (x, y, z) m−3
    n0 Electron density at a bulk plasma m−3
    ne Electron density m−3
    ne(F) Electron density (fully bounded plasma) m−3
    ne(L) Electron density (locally bounded plasma) m−3
    ne Electron density at an open boundary m−3
    ng Number density of neutral gas m−3
    ni Ion density m−3
    ni Ion density at an open boundary m−3
    ns Electron density at a sheath edge m−3
    NA AL,eff/AL,eff -
    Nu ui/uB -
    P0 Gas pressure Torr
    Pabs Total energy loss: Pc+Pe+Pi J·s−1
    Pc Volume energy loss in a plasma J·s−1
    Pe Kinetic energy loss of electrons at a reactor wall J·s−1
    Pi Kinetic energy loss of ions at a reactor wall J·s−1
    Te Electron temperature V
    Te(F) Electron temperature (fully bounded plasma) V
    Te(L) Electron temperature (locally bounded plasma) V
    Ti Ion temperature V
    Tn Neutral gas temperature V
    uB Bohm velocity: (eTe/Mi)1/2 m·s−1
    ui Ion escape velocity at an open boundary m·s−1
    uib Initial ion velocity at a bulk plasma m·s−1
    uiz (eεiz/Mi)1/2 m·s−1
    V0 Reactor volume m3
    Vs Sheath voltage V
    α V0ngKiz0 m3·s−1
    β e/Mi C·kg−1
    γ AL,eff(1+NuNA) m2
    ΓL,e Electron flux to a bounded reactor wall s−1·m−2
    ΓL,e Electron flux to an unbounded reactor wall s−1·m−2
    ΓL,i Ion flux to a bounded reactor wall: nsuB s−1·m−2
    ΓL,i Ion flux to an unbounded reactor wall: niui s−1·m−2
    ε0 Permittivity of vacuum F·m−1
    εc Collisional energy loss per electron–ion pair creation V
    εe Electron kinetic energy loss at a bounded wall V
    εex Excitation energy of neutral gas V
    εi Ion kinetic energy loss at a bounded wall V
    εiz Ionization energy of neutral gas V
    εT Total energy lost per electron–ion pair V
    εe Electron kinetic energy loss at an unbounded wall V
    εi Ion kinetic energy loss at an unbounded wall V
    θ AL,eff/AT,eff -
    λDe Electron Debye length: (ε0Te/ene)1/2 m
    λi Ionization mean free path m
    μ β(γ/α)2 V−1
    νiz Ionization frequency: ngKiz0exp(εiz/Te) s−1
    νiz0 Preexponential factor: ngKiz0 s−1
    Φ Electric potential V
    ψ i2(diz/deff)(1+NuNA) -
    ωpi Ion plasma frequency: (e2ni/ε0Mi)1/2 s−1
     | Show Table
    DownLoad: CSV

    To integrate the concepts of bounded and unbounded reactor walls into particle and energy balance equations, it is essential to define their respective physical roles. Bounded walls serve to confine plasma physically. These reactor walls can be categorized based on their electrical properties as: (1) electrically grounded walls, (2) floating walls, and (3) powered walls. In plasma reactors used for semiconductor production, reactor walls are coated with dielectric films such as Y2O3, YOF, YF3 [16, 17], which block direct current from the plasma. Electrons and ions generated from bulk plasma transport their kinetic energy to the reactor wall, where it dissipates on the surface of the reactor wall. This plasma energy loss varies substantially depending on factors such as plasma potential, direct current (DC) self-bias, discharge gas pressure, and sheath characteristics. Under DC discharge conditions, ion and electron energy losses on the reactor-wall surfaces are determined by the sheath voltage (Vs) and electron temperature (Te), respectively, and are known as εi=Vs+(1/2)Te and εe=2Te [3]. Generally, the kinetic energy loss characteristics of plasma can be influenced by factors such as discharge gas temperature and gas flow dynamics within the reactor. However, in typical plasma etchers, the discharge pressure is very low (a few millitorr). Under these conditions, the neutral gas temperature (Tn​) is significantly lower than either ion temperature (Ti​) or electron temperature (Te​), making its influence on plasma kinetic energy negligible. Furthermore, within this range of discharge pressure, the flow dynamics inside the reactor can effectively be disregarded.

    Unbounded reactor walls do not confine plasma physically. Electrons and ions escape to the outside of the reactor through open areas. In this case, the kinetic energy transferred from plasma can be determined by ion velocities and electron temperatures around bounded areas. Examples of widely applied unbounded reactor walls in plasma reactors include the plasma confinement ring (figure 1(a)) and the gas baffle (figure 1(b)). The plasma confinement ring consists of 4 quartz rings, with the spacing between them varying according to process pressure. These structures confine plasma to localized regions, allowing chemical by-products generated during wafer processing to be exhausted through the spaces between the confinement rings. The gas baffle is located between the reactor process zone and the gas pumping system, controlling pressure gradients and ensuring stable plasma confinement within the reactor process zone.

    Figure  1.  Example of locally bounded plasma wall: (a) plasma confinement rings, (b) gas baffle slits in an industrial plasma reactor. Plasma is locally confined by slit structures, and heterogeneous plasma boundaries are formed.

    In a plasma reactor system with fully bounded walls (figure 2(a)), the inner reactor represents the area where plasma processes occur, assuming conditions where the process pressure is sufficiently low (“ionization mean free path (λi) reactor scale” [1820]), ensuring the formation of uniform plasma. Under these conditions, the Bohm criterion is valid at the sheath edge, and ions enter the sheath with the Bohm velocity uB. The electron temperature and density can then be calculated using the particle and energy balance equations as indicated in equations (1) and (2).

    Figure  2.  Schematic description of (a) fully bounded plasma boundary, (b) locally bounded plasma boundary. In the case of a fully bounded plasma boundary, the ion velocity in the plasma-sheath boundary is determined by the Bohm velocity uB. However, in the case of a reactor having a locally bounded plasma boundary, the ion diffusing to the unbounded area is not limited to the Bohm velocity.

    In a plasma reactor system featuring an unbounded wall (figure 2(b)), the outer reactor defines a space where plasma diffuses through the unbounded wall (open area) of the inner reactor. Ions passing through the unbounded area do not encounter the presheath-sheath structure and are not constrained by the Bohm criterion. Mathematically, this unbounded area can be represented as a local Gaussian surface [21] through which electron and ion fluxes pass. The volume ionization formed within the Gaussian surface remains in equilibrium with the plasma loss through it. Consequently, the electron and ion fluxes passing through the Gaussian surface determine the global electron temperature and electron density within the reactor. Even if the reactor wall is fully open, it remains possible to solve energy and particle balance equations using the electron and ion fluxes passing through the Gaussian surface. To determine the global electron density and electron temperature under locally bounded plasma conditions, it is necessary to consider the plasma loss characteristics at heterogeneous boundaries separately, and equations (1) and (2) should be modified accordingly. The development of an analytical model for this is described in subsequent sections.

    It can be generally assumed that even for locally bounded plasma, the plasma volume ionization within the reactor always remains in balance with the plasma wall loss. Denoting ion fluxes reaching the bounded wall area AL and the unbounded wall area AL as ΓL,i and ΓL,i respectively, we obtain the following particle balance equation:

    νizn(x,y,z)dV=ΓL,idAL+ΓL,idAL. (3)

    Here, νiz and n(x,y,z) represent the plasma volume ionization frequency and spatial electron density, respectively. For ion fluxes reaching the reactor’s boundaries, we define the ion density at the bounded wall’s sheath edge as ns and the ion density at the open boundary as ni. Following this, the ion fluxes at the reactor wall can be expressed as ΓL,i=nsuB and ΓL,i=niui, respectively. In this study, plasma discharge assumes a low-pressure condition where the ionization mean free path is significantly larger than the reactor scale. Under these conditions, the spatial distribution of plasma is determined by global ionization across the entire reactor volume rather than local ionization. Thus, the ion flux supplied by bulk plasma ionization is not locally nonuniform. These conditions approximate the bulk plasma in a 0-dimensional form, where the physical characteristics of ions reaching AL and AL are determined by the global ionization properties within the reactor.

    To simplify equation (3) and applying the low-pressure limit where λi reactor scale, the particle balance equation can be approximated as νizn(x,y,z)dVνizn0V0, and equation (3) can thus be described as:

    νizn0V0=nsuBAL+niuiAL. (4)

    Here, n0 and V0 represent the bulk electron density and reactor volume, respectively. The volume ionization frequency can be expressed in the Arrhenius form as νiz=ngKiz0exp(εiz/Te) [18]. To modify equation (4) into a form that includes the effective loss area, we define hns/n0 and hni/n0. Using this, we express the effective plasma loss areas as AL,eff=hAL and AL,eff=hAL. Applying this to equation (4) yields the following equation:

    V0ngKiz0exp(εizTe)(eTeMi)12AL,effuiAL,eff=0. (5)

    In general, obtaining a general solution for Te can be challenging when the last term uiAL,eff is present in equation (5). To avoid this, there is a need to normalize the parameters ui and AL,eff. Firstly, ui can be normalized as Nuui/uB. Here, Nu is mathematically normalized to the Bohm velocity but does not inherently depend on the electron temperature. Secondly, AL,eff can be normalized as NAAL,eff/AL,eff. The total effective loss area AT,eff of the plasma reactor is always conserved, so this area can be defined as:

    AT,effAL,eff+AL,eff=Constant. (6)

    Assuming that θ is a real number within the range of 0–1.0, AL,eff and AL,eff can be represented as:

    AL,eff=θAT,eff, (7)
    AL,eff=(1θ)AT,eff. (8)

    By using Nu=ui/uB and NA=AL,eff/AL,eff, the last term of equation (5) can be included in (eTe/Mi)12AL,eff, and the particle balance equation can be expressed as:

    V0ngKiz0exp(εizTe)(eTeMi)12AL,eff(1+NuNA)=0. (9)

    If we define constants α, β, and γ as αV0ngKiz0, βe/Mi, γAL,eff(1+NuNA), equation (5) can be expressed as follows:

    αexp(εizTe)(βTe)12γ=0. (10)

    Using μβ(γ/α)2, we can rewrite equation (10) as follows:

    1Teexp(2εizTe)=μ. (11)

    When solving equation (11) for the electron temperature Te, the following result is obtained:

    Te=2εizW1[2εizμ]. (12)

    Equation (12) is a function of the Lambert W function [22]. Using the definitions of α, β, and γ, equation (12) can be expressed as follows:

    Te=2εizW1[2(eεizMi){AL,eff(1+NuNA)}2(V0ngKiz0)2]. (13)

    To simplify the solution of equation (13), it is necessary to define νiz0ngKiz0, uiz(eεiz/Mi)1/2, dizuiz/νiz0, and deffV0/AL,eff. Using this, we can obtain the following expression:

    Te=2εizW1[2{dizdeff(1+NuNA)}2]. (14)

    The electron temperature can be determined through four parameters for gas state (εiz, Kiz0, ng, Mi), three parameters for the reactor (AL, AL, V0), and four parameters for the plasma (ui, ns, ni, n0). Using equation (14), it is also possible to calculate the change in electron temperature with respect to NA and Nu.

    TeNA=4(1+NuNA)W1(ψ2){1+W1(ψ2)}εizNu, (15)
    TeNu=4(1+NuNA)W1(ψ2){1+W1(ψ2)}εizNA. (16)

    Here, \psi is defined as \psi \equiv \mathrm{i}\sqrt{2}{(d}_{\mathrm{i}\mathrm{z}}/{d}_{\mathrm{e}\mathrm{f}\mathrm{f}})\left(1+{N}_{u}{N}_{A}\right) . In the case of the fully bounded plasma, where A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}=0 (i.e., \theta =0 ) is satisfied, equation (14) is approximated as:

    T_{\mathrm{e}}=\frac{-2\varepsilon_{\mathrm{i}\mathrm{z}}}{W_{-1}\left[-2\left(\dfrac{d_{\mathrm{i}\mathrm{z}}}{d_{\mathrm{e}\mathrm{f}\mathrm{f}}}\right)^2\right]}. (17)

    Equation (17) represents the analytic solution for the electron temperature obtained from the particle balance equation of the fully bounded plasma. The electron temperature characteristics of the locally bounded plasma need to be compared to those of the conventional fully bounded plasma. If we define the electron temperature based on the conditions of the locally bounded plasma as {T}_{\mathrm{e}}\left(\mathrm{L}\right) , and the electron temperature under the conditions of the fully bounded plasma as {T}_{\mathrm{e}}\left(\mathrm{F}\right) , then we can express the normalized electron temperature as:

    \dfrac{{T}_{\mathrm{e}}\left(\mathrm{L}\right)}{{T}_{\mathrm{e}}\left(\mathrm{F}\right)}=\dfrac{{W}_{-1}\left[-2{\left(\dfrac{{d}_{\mathrm{i}\mathrm{z}}}{{d}_{\mathrm{e}\mathrm{f}\mathrm{f}}}\right)}^{2}\right]}{{W}_{-1}\left[-2{\left\{\dfrac{{d}_{\mathrm{i}\mathrm{z}}}{{d}_{\mathrm{e}\mathrm{f}\mathrm{f}}}\left(1+{N}_{u}{N}_{A}\right)\right\}}^{2}\right]} . (18)

    In representing the change in the normalized electron temperature {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) as a function of {u}_{\mathrm{i}} / {u}_{\mathrm{B}} (figure 3(a)), argon gas at 20 mTorr pressure, 400 K temperature, a chamber volume of V_0=\left(0.2\right)^3\mathrm{\ m}^3 , an effective area of A_{\mathrm{T}}= 6\times\left(0.2\right)^2\mathrm{\ m}^2 , and h=0.5 , and h'=0.5 [18] were used. Under the conditions 0 < A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} , the normalized electron temperature {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) increases as the {u}_{\mathrm{i}} / {u}_{\mathrm{B}} increases (figure 3(a)). As n'_{\mathrm{i}}{u}_{\mathrm{i}}A'_{\mathrm{L}} increases in equation (4), the plasma volume ionization should equilibrate with wall loss. Since the plasma volume ionization frequency is proportional to \nu_{\mathrm{i}\mathrm{z}}\propto\mathrm{e}\mathrm{x}\mathrm{p}\left(-\varepsilon_{\mathrm{i}\mathrm{z}}/T_{\mathrm{e}}\right) , an increase in {u}_{\mathrm{i}} should lead to an increase in {T}_{\mathrm{e}} as well. Under the conditions of {u}_{\mathrm{i}} / {u}_{\mathrm{B}}=1 , where the plasma loss characteristics of the unbounded and bounded areas become identical, {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) does not depend on changes in the A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} .

    Figure  3.  Normalized electron temperature {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) trends according to the (a) normalized ion velocity {u}_{\mathrm{i}} / {u}_{\mathrm{B}} , (b) normalized unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} .

    When the variation of the normalized electron temperature {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) with increasing A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} is considered (figure 3(b)), the plasma loss per unit area of the unbounded walls is less than that of the bounded walls when {u}_{\mathrm{i}} / {u}_{\mathrm{B}} < 1. As a result, the total plasma loss of the reactor decreases as A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} increases. The volume ionization frequency inside the reactor should be balanced by the plasma wall loss, and \nu_{\mathrm{i}\mathrm{z}}\propto\mathrm{e}\mathrm{x}\mathrm{p}\left(-\varepsilon_{\mathrm{i}\mathrm{z}}/T_{\mathrm{e}}\right) should be reduced. To achieve this, {T}_{\mathrm{e}} should decrease (figure 3(b)). When {u}_{\mathrm{i}} / {u}_{\mathrm{B}} = 1, the plasma loss per unit area of the unbounded walls becomes equal to the plasma loss per unit area of the bounded walls. Since the total plasma loss area {A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} is always constant, there is no change in the electron temperature even when the area of A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} changes. When {u}_{\mathrm{i}} / {u}_{\mathrm{B}} > 1, the plasma loss per unit area of the unbounded walls is greater than that of the bounded walls, and the total plasma loss inside the reactor increases with A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} . The plasma volume ionization frequency within the reactor should remain in equilibrium with plasma wall loss, so \nu_{\mathrm{i}\mathrm{z}}\propto\mathrm{e}\mathrm{x}\mathrm{p}\left(-\varepsilon_{\mathrm{i}\mathrm{z}}/T_{\mathrm{e}}\right) also increases. To achieve this, {T}_{\mathrm{e}} should also increase.

    Figure 4 represents the variation in the normalized electron temperature with respect to {u}_{\mathrm{i}} / {u}_{\mathrm{B}} and A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} . According to the 2-dimensional plot results for {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) , when both {u}_{\mathrm{i}} / {u}_{\mathrm{B}}\to 0 and A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}}\to 1 are satisfied, {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) is minimized. In this case, particle losses {n}_{\mathrm{s}}{u}_{\mathrm{B}}{A}_{\mathrm{L}}+n'_{\mathrm{i}}{u}_{\mathrm{i}}A'_{\mathrm{L}} through both the bounded area {A}_{\mathrm{L}} and unbounded area A'_{\mathrm{L}} are minimized, and plasma volume ionization frequency is maximally reduced. Numerically, under conditions of {u}_{\mathrm{i}} / {u}_{\mathrm{B}}\approx 0.2 and A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}}\approx 0.6 , the normalized electron temperature satisfies {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right)\approx 0.92 . This indicates an approximately 8% reduction in electron temperature compared to fully bounded plasma.

    Figure  4.  Normalization electron temperature {T}_{\mathrm{e}}\left(\mathrm{L}\right)/{T}_{\mathrm{e}}\left(\mathrm{F}\right) trends according to the normalized ion velocity {u}_{\mathrm{i}} / {u}_{\mathrm{B}} , normalized unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} .

    The RF power ( {P}_{\mathrm{a}\mathrm{b}\mathrm{s}} ) delivered to the plasma is always equal to the sum of the volume energy loss ( {P}_{\mathrm{c}} ) in the plasma and the kinetic energy loss of electrons and ions ( {P}_{\mathrm{e}}+{P}_{\mathrm{i}} ) at the reactor walls. This can be expressed as:

    {P}_{\mathrm{a}\mathrm{b}\mathrm{s}}={P}_{\mathrm{c}}+{P}_{\mathrm{e}}+{P}_{\mathrm{i}} . (19)

    Under the locally bounded plasma conditions, equation (19) can be specified as follows for {P}_{\mathrm{c}} , {P}_{\mathrm{e}} , and {P}_{\mathrm{i}} .

    {P}_{\mathrm{c}}=e{\varepsilon }_{\mathrm{c}}\iiint {\nu }_{\mathrm{i}\mathrm{z}}n\left(x,y,z\right)\mathrm{d}V , (20)
    {P}_{\mathrm{e}}=e{\varepsilon }_{\mathrm{e}}\iint {\varGamma }_{\mathrm{L},\mathrm{e}}\mathrm{d}{A}_{\mathrm{L}}+e\varepsilon '_{\mathrm{e}}\iint \varGamma' _{\mathrm{L},\mathrm{e}}\mathrm{d}A'_{\mathrm{L}} , (21)
    {P}_{\mathrm{i}}=e{\varepsilon }_{\mathrm{i}}\iint {\varGamma }_{\mathrm{L},\mathrm{i}}\mathrm{d}{A}_{\mathrm{L}}+e\varepsilon' _{\mathrm{i}}\iint \varGamma' _{\mathrm{L},\mathrm{i}}\mathrm{d}A'_{\mathrm{L}} . (22)

    Here, {\varepsilon }_{\mathrm{c}} represents the plasma energy loss due to collisions, and {\varepsilon }_{\mathrm{e}} and {\varepsilon }_{\mathrm{i}} represent the kinetic energy loss of electrons and ions to the reactor boundaries. In the case of plasma discharge that includes an unbounded area, it is necessary to separately consider the energy loss of electrons and ions passing through this boundary surface, with this energy loss denoted as \varepsilon' _{\mathrm{e}} , and \varepsilon' _{\mathrm{i}} , respectively. {\varGamma }_{\mathrm{L},\mathrm{e}} , \varGamma'_{\mathrm{L},\mathrm{e}} , and {\varGamma }_{\mathrm{L},\mathrm{i}} , \varGamma '_{\mathrm{L},\mathrm{i}} in equations (21) and (22) represent the electron and ion fluxes reaching the bounded area ( {A}_{\mathrm{L}} ) and unbounded area ( A'_{\mathrm{L}} ), respectively. In plasmas with heterogeneous boundaries, maintaining the quasi-neutrality condition necessitates satisfying conditions {\varGamma }_{\mathrm{L},\mathrm{e}}={\varGamma }_{\mathrm{L},\mathrm{i}} and \varGamma' _{\mathrm{L},\mathrm{e}}=\varGamma' _{\mathrm{L},\mathrm{i}} . Assuming a low-pressure limit satisfying the {\lambda }_{\mathrm{i}}\gg reactor scale, the plasma energy loss {P}_{\mathrm{c}} , {P}_{\mathrm{e}} , and {P}_{\mathrm{i}} can be simplified as:

    {P}_{\mathrm{c}}=e{\varepsilon }_{\mathrm{c}}{\nu }_{\mathrm{i}\mathrm{z}}{n}_{0}{V}_{0} , (23)
    \left(\begin{array}{c}{P}_{\mathrm{e}}\\ {P}_{\mathrm{i}}\end{array}\right)=e\left(\begin{array}{cc}{\varepsilon }_{\mathrm{e}}& \varepsilon '_{\mathrm{e}}\\ {\varepsilon }_{\mathrm{i}}& \varepsilon '_{\mathrm{i}}\end{array}\right)\left(\begin{array}{cc}{\varGamma }_{\mathrm{L},\mathrm{i}}& 0\\ 0& \varGamma' _{\mathrm{L},\mathrm{i}}\end{array}\right)\left(\begin{array}{c}{A}_{\mathrm{L}}\\ A'_{\mathrm{L}}\end{array}\right) . (24)

    Through equations (23) and (24), the RF power delivered to the plasma can be formulated as:

    \begin{split} {P}_{\mathrm{a}\mathrm{b}\mathrm{s}}=&e{\varepsilon }_{\mathrm{c}}{\nu }_{\mathrm{i}\mathrm{z}}{n}_{0}{V}_{0}+{e\varepsilon }_{\mathrm{e}}{n}_{\mathrm{s}}{u}_{\mathrm{B}}{A}_{\mathrm{L}}+e\varepsilon '_{\mathrm{e}}n'_{\mathrm{i}}{u}_{\mathrm{i}}A'_{\mathrm{L}}\\&+e{\varepsilon }_{\mathrm{i}}{n}_{\mathrm{s}}{u}_{\mathrm{B}}{A}_{\mathrm{L}}+e\varepsilon '_{\mathrm{i}}n'_{\mathrm{i}}{u}_{\mathrm{i}}A'_{\mathrm{L}} \end{split}. (25)

    Applying h={n}_{\mathrm{s}} / {n}_{0} , {h'}=n'_{\mathrm{i}} / {n}_{0} , and {A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}=h{\cdot A}_{\mathrm{L}} , A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}= {h'}\cdot A'_{\mathrm{L}} to equation (25), we can determine the bulk electron density {n}_{0} as follows:

    {n}_{0}=\frac{{P}_{\mathrm{a}\mathrm{b}\mathrm{s}}}{e{\varepsilon }_{\mathrm{c}}{n}_{\mathrm{g}}{K}_{\mathrm{i}\mathrm{z}}{V}_{0}+e\left({\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}}\right){u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}+e(\varepsilon '_{\mathrm{e}}+\varepsilon '_{\mathrm{i}}){u}_{\mathrm{i}}A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}} . (26)

    By applying {N}_{u}={u}_{\mathrm{i}} / {u}_{\mathrm{B}} and {N}_{A}=A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} to equation (26) and rearranging it, we obtain the energy balance equation for the locally bounded plasma as follows:

    {n}_{0}=\frac{{P}_{\mathrm{a}\mathrm{b}\mathrm{s}}}{e{\varepsilon }_{\mathrm{c}}{n}_{\mathrm{g}}{K}_{\mathrm{i}\mathrm{z}}{V}_{0}+e{u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\{\left({\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}}\right)+{N}_{u}{N}_{A}(\varepsilon '_{\mathrm{e}}+\varepsilon' _{\mathrm{i}}\left)\right\}} . (27)

    The electron density can be determined through four parameters regarding the gas state ( \varepsilon_{\mathrm{i}\mathrm{z}} , {K}_{\mathrm{i}\mathrm{z}0} , {n}_{\mathrm{g}} , {M}_{\mathrm{i}} ), three parameters regarding the chamber ( {A}_{\mathrm{L}} , A'_{\mathrm{L}}, {V}_{0} ), seven parameters regarding the plasma \left(u\mathrm{_i},\ u_{\mathrm{B}},\ \varepsilon_{\mathrm{c}},\ \varepsilon_{\mathrm{e}},\ \varepsilon_{\mathrm{i}},\ \varepsilon'_{\mathrm{e}},\ \varepsilon'_{\mathrm{i}}\right) , and one parameter regarding RF power ( {P}_{\mathrm{a}\mathrm{b}\mathrm{s}} ). By utilizing equation (27), changes in electron density with respect to {N}_{A} and {N}_{u} can also be calculated.

    \begin{split} \dfrac{{\partial n}_{0}}{\partial {N}_{A}}=&-\dfrac{e{u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}(\varepsilon '_{\mathrm{e}}+\varepsilon '_{\mathrm{i}})}{{[{e\varepsilon }_{\mathrm{c}}{n}_{\mathrm{g}}{K}_{\mathrm{i}\mathrm{z}}{V}_{0}+e{u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\{\left({\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}}\right)+{N}_{u}{N}_{A}(\varepsilon '_{\mathrm{e}}+\varepsilon' _{\mathrm{i}})\left\}\right]}^{2}}\times\\& {P}_{\mathrm{a}\mathrm{b}\mathrm{s}}{N}_{u},\end{split} (28)
    \begin{split}\dfrac{{\partial n}_{0}}{\partial {N}_{u}}=&-\dfrac{e{u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}({\varepsilon }'_{\mathrm{e}}+\varepsilon'_{\mathrm{i}})}{{[e\varepsilon _{\mathrm{c}}{n}_{\mathrm{g}}{K}_{\mathrm{i}\mathrm{z}}{V}_{0}+{eu}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\{\left({\varepsilon }_{\mathrm{e}}+\varepsilon_{\mathrm{i}}\right)+{N}_{u}{N}_{A}({\varepsilon}'_{\mathrm{e}}+\varepsilon '_{\mathrm{i}})\left\}\right]}^{2}}\times\\&{P}_{\mathrm{a}\mathrm{b}\mathrm{s}}{N}_{A}. \end{split} (29)

    By using the condition A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}=0 and equation (2), we obtain the classical energy balance equation for the fully bounded plasma as:

    {n}_{0}=\frac{{P}_{\mathrm{a}\mathrm{b}\mathrm{s}}}{e{u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\left({\varepsilon }_{\mathrm{c}}+{\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}}\right)} . (30)

    Defining the electron density based on the locally bounded plasma conditions as n\mathrm{_e}\left(\mathrm{L}\right) and the electron density based on the fully bounded plasma conditions as n_{\mathrm{e}}\left(\mathrm{F}\right) , the normalized electron density can be formulated as:

    \frac{{n}_{\mathrm{e}}\left(\mathrm{L}\right)}{{n}_{\mathrm{e}}\left(\mathrm{F}\right)}=\frac{{u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\left({\varepsilon }_{\mathrm{c}}+{\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}}\right)}{{\varepsilon }_{\mathrm{c}}{n}_{\mathrm{g}}{K}_{\mathrm{i}\mathrm{z}}{V}_{0}+{u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\{\left({\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}}\right)+{N}_{u}{N}_{A}(\varepsilon'_{\mathrm{e}}+\varepsilon '_{\mathrm{i}}\left)\right\}} . (31)

    We used argon gas at 20 mTorr pressure, 400 K temperature, chamber volume {V}_{0}={\left(0.2\right)}^{3}\;{\mathrm{m}}^{3} , {A}_{\mathrm{T}}=6\times {\left(0.2\right)}^{2}\;{\mathrm{m}}^{2} , h=0.5 , {h'}=0.5 , {P}_{\mathrm{a}\mathrm{b}\mathrm{s}}=500\;\mathrm{W} , {T}_{\mathrm{e}}=2\;\mathrm{e}\mathrm{V} , {V}_{\mathrm{s}}=100\;\mathrm{V} , {\varepsilon }_{\mathrm{e}}=2{T}_{\mathrm{e}} , {\varepsilon }_{\mathrm{i}}={V}_{\mathrm{s}}+(1/2){T}_{\mathrm{e}} , and \varepsilon '_{\mathrm{e}}=2{T}_{\mathrm{e}} to analyze equation (31). The collisional energy loss \varepsilon\mathrm{_c} of bulk plasma was calculated using [23]:

    {\varepsilon }_{\mathrm{c}}={\varepsilon }_{\mathrm{i}\mathrm{z}}+\frac{{K}_{\mathrm{e}\mathrm{x}}}{{K}_{\mathrm{i}\mathrm{z}}}{\varepsilon }_{\mathrm{e}\mathrm{x}}+\frac{{K}_{\mathrm{e}\mathrm{l}}}{{K}_{\mathrm{i}\mathrm{z}}}\frac{3{m}_{\mathrm{e}}}{{M}_{\mathrm{i}}}{T}_{\mathrm{e}} . (32)

    The variation of the normalized electron density {n}_{\mathrm{e}}\left(\mathrm{L}\right)/{n}_{\mathrm{e}}\left(\mathrm{F}\right) with respect to {u}_{\mathrm{i}} / {u}_{\mathrm{B}} (figure 5(a)) indicates that the normalized electron density decreases as {u}_{\mathrm{i}} / {u}_{\mathrm{B}} increases. This can be interpreted as an increase in ion loss through the unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} . Conversely, there is an increasing trend in normalized plasma density as A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} increases. Physically, ions and electrons passing through the unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} do not experience strong sheath voltage acceleration. This means that \varepsilon '_{\mathrm{e}}+\varepsilon'_{\mathrm{i}}< {\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}} should always be satisfied. Hence, as A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} increases, total plasma wall loss decreases, and the electron density of the bulk plasma increases.

    Figure  5.  Normalized electron density n_{\mathrm{e}}\left(\mathrm{L}\right)/n_{\mathrm{e}}\left(\mathrm{F}\right) trends according to the (a) normalized ion velocity {u}_{\mathrm{i}} / {u}_{\mathrm{B}} , (b) normalized unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} .

    The variation of the normalized electron density {n}_{\mathrm{e}}\left(\mathrm{L}\right)/{n}_{\mathrm{e}}\left(\mathrm{F}\right) with respect to A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} (figure 5(b)) shows that the normalized electron density rapidly increases as A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} increases. This is due to the decrease in total plasma wall loss. Additionally, it appears that {n}_{\mathrm{e}}\left(\mathrm{L}\right)/{n}_{\mathrm{e}}\left(\mathrm{F}\right) decreases as the normalized ion velocity {u}_{\mathrm{i}} / {u}_{\mathrm{B}} increases from 0 to 1.5. This can be interpreted as an increase in ion loss through the unbounded area.

    The variation of the normalized electron density with respect to {u}_{\mathrm{i}} / {u}_{\mathrm{B}} and A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} (figure 6) shows that the electron density reaches its maximum when {u}_{\mathrm{i}} / {u}_{\mathrm{B}}\to 0 and A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}}\to 1 . Under these conditions, (\varepsilon' _{\mathrm{e}}+\varepsilon '_{\mathrm{i}}){u}_{\mathrm{i}}A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\to 0 and \left({\varepsilon }_{\mathrm{e}}+{\varepsilon }_{\mathrm{i}}\right){u}_{\mathrm{B}}{A}_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}\to 0 are satisfied in equations (26), resulting in an increase in electron density. Numerically, when {u}_{\mathrm{i}} / {u}_{\mathrm{B}}\approx 0.2 and A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}}\approx 0.6 , the electron density increases by approximately 38% ( {n}_{\mathrm{e}}\left(L\right)/{n}_{\mathrm{e}}\left(F\right)\approx 1.38 ). The variation in the heterogeneous boundary conditions of the reactor is a key factor in altering plasma density, and this is directly linked to changes in the unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} .

    Figure  6.  Normalized electron density n_{\mathrm{e}}\left(\mathrm{L}\right)/n_{\mathrm{e}}\left(\mathrm{F}\right) according to the normalized ion velocity {u}_{\mathrm{i}} / {u}_{\mathrm{B}} , normalized unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}/{A}_{\mathrm{T},\mathrm{e}\mathrm{f}\mathrm{f}} .

    We derived the particle and energy balance equations for the locally bounded plasma through equations (14) and (27). To predict global electron temperatures and densities in the reactor using these equations, it is necessary to calculate the ion velocity u\mathrm{_i} passing through the reactor’s open boundary. The electron flux and ion flux passing through the unbounded area A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} must always be equal (i.e., \varGamma '_{\mathrm{L},\mathrm{e}}=\varGamma '_{\mathrm{L},\mathrm{i}}), giving us:

    \frac{1}{4}n'_{\mathrm{e}}{\left(\frac{8e{T}_{\mathrm{e}}}{{\text{π}} {m}_{\mathrm{e}}}\right)}^{\frac{1}{2}}=n'_{\mathrm{i}}{u}_{\mathrm{i}} . (33)

    Here, n'_{\mathrm{e}} and n'_{\mathrm{i}} represent the electron density and ion density at the open boundary. The position of the open boundary is defined as the origin (x=0) . When the change in electric potential from the bulk plasma to the open boundary is denoted as \delta \varPhi , the ion velocity at the open boundary can be expressed as:

    {u}_{\mathrm{i}}={\left({u}_{\mathrm{i}\mathrm{b}}^{2}-\frac{2e\delta \varPhi }{{M}_{\mathrm{i}}}\right)}^{\frac{1}{2}}\cong {\left(-\frac{2e\delta \varPhi }{{M}_{\mathrm{i}}}\right)}^{\frac{1}{2}} . (34)

    Here, {u}_{\mathrm{i}\mathrm{b}} represents the initial ion velocity in the bulk plasma, and its value is typically assumed to be negligibly small. Substituting equation (33) into equation (34), we can determine n'_{\mathrm{i}}/n'_{\mathrm{e}} as:

    \frac{n'_{\mathrm{i}}}{n'_{\mathrm{e}}}\cong \frac{1}{2\sqrt{{\text{π}} }}{\left(-\frac{{m}_{\mathrm{e}}}{{M}_{\mathrm{i}}}\frac{\delta \varPhi }{{T}_{\mathrm{e}}}\right)}^{-\frac{1}{2}} . (35)

    Considering {m}_{\mathrm{e}}\ll {M}_{\mathrm{i}} , the ion density passing through the open boundary will always be larger than the electron density. Thus, it would not be possible to assume n'_{\mathrm{e}}=n'_{\mathrm{i}} at the open boundary of the plasma reactor. Furthermore, since there is no sheath structure around the open boundary, it is also not possible to assume that the conventional Bohm criterion {u}_{\mathrm{i}}\geqslant {u}_{\mathrm{B}} exists at the open boundary. In conclusion, there is a need to redefine the velocity of ions around the open plasma boundary. To achieve this, it is essential to solve the Poisson equation that includes the open boundary of the plasma.

    \frac{{\mathrm{d}}^{2}\varPhi }{\mathrm{d}{x}^{2}}=\frac{e}{{\varepsilon }_{0}}\left({n}_{\mathrm{e}}-{n}_{\mathrm{i}}\right)=\frac{e}{{\varepsilon }_{0}}\left[n'_{\mathrm{e}}{\mathrm{e}}^{\tfrac{\varPhi }{{T}_{\mathrm{e}}}}-n'_{\mathrm{i}}{\left(1-\frac{\varPhi }{{\varepsilon }'_{\mathrm{i}}}\right)}^{-\frac{1}{2}}\right] . (36)

    Here, {e\varepsilon }'_{\mathrm{i}} represents the ion energy passing through the open boundary x=0 , given by {e\varepsilon }'_{\mathrm{i}}=(1/2){{M}_{\mathrm{i}}u}_{\mathrm{i}}^{2} . If we define the electric potential and electric field as \varPhi \left(x=0\right)\equiv 0 and \mathrm{d}\varPhi (x=0)/\mathrm{d}x\equiv {E}_{0} , equation (36) can be expressed as [3]:

    { \dfrac{1}{2}\left[{\left(\dfrac{\mathrm{d}\varPhi }{\mathrm{d}x}\right)}^{2} -{E}_{0}^{2}\right] = \dfrac{e}{{\varepsilon }_{0}}\left[n'_{\mathrm{e}}\left\{{T}_{\mathrm{e}}{\mathrm{e}}^{\tfrac{\varPhi }{{T}_{\mathrm{e}}}}-{T}_{\mathrm{e}}\right\} +n'_{\mathrm{i}}\left\{2{\varepsilon }'_{\mathrm{i}}{\left(1-\dfrac{\varPhi }{{\varepsilon }'_{\mathrm{i}}}\right)}^{\tfrac{1}{2}}-2{\varepsilon }'_{\mathrm{i}}\right\}\right] .} (37)

    After Taylor expansion for \mathrm{exp}(\varPhi /{T}_{\mathrm{e}}) and {\left(1-\varPhi /{\varepsilon }'_{\mathrm{i}}\right)}^{\frac{1}{2}} , we obtain:

    \frac{1}{2}\left[{\left(\frac{\mathrm{d}\varPhi }{\mathrm{d}x}\right)}^{2}-{E}_{0}^{2}\right]\cong \frac{e}{{\varepsilon }_{0}}\left[n'_{\mathrm{e}}\left\{\varPhi +\frac{1}{2}\left(\frac{{\varPhi }^{2}}{{T}_{\mathrm{e}}}\right)\right\}+n'_{\mathrm{i}}\left\{-\varPhi -\frac{1}{4}\left(\frac{{\varPhi }^{2}}{{\varepsilon }'_{\mathrm{i}}}\right)\right\}\right] . (38)

    Each term in equation (38) can be rearranged as follows:

    {\left(\frac{\mathrm{d}\varPhi }{\mathrm{d}x}\right)}^{2}+\frac{2e n'_{\mathrm{i}}}{{\varepsilon }_{0}}\left[\left(1-\frac{n'_{\mathrm{e}}}{n'_{\mathrm{i}}}\right)\varPhi \right]\cong {E}_{0}^{2}+\frac{2en'_{\mathrm{i}}}{{\varepsilon }_{0}}\left[\Bigg(\frac{n'_{\mathrm{e}}}{n'_{\mathrm{i}}}\frac{1}{2{T}_{\mathrm{e}}}-\frac{1}{4{\varepsilon }'_{\mathrm{i}}}\Bigg){\varPhi }^{2}\right] . (39)

    When the ions reach the open boundary, 0 < \varPhi is satisfied, and the condition n'_{\mathrm{e}} < n'_{\mathrm{i}} is confirmed by equation (35). This verifies that the left-hand side of equation (39) is always positive. Consequently, this makes the right-hand side of equation (39) also positive, which can then be represented as follows:

    {E}_{0}^{2}+\Bigg(\frac{1}{{\lambda }_{\mathrm{D}\mathrm{e}}^{2}}-\frac{1}{2}\frac{en'_{\mathrm{i}}}{{\varepsilon }_{0}{\varepsilon }'_{\mathrm{i}}}\Bigg){\varPhi }^{2}\geqslant 0 . (40)

    Here, {\lambda }_{\mathrm{D}\mathrm{e}} is the electron Debye length given by {\lambda }_{\mathrm{D}\mathrm{e}}={\left({\varepsilon }_{0}{T}_{\mathrm{e}}/en'_{\mathrm{e}}\right)}^{1/2} . Using the ion plasma frequency {\omega }_{\mathrm{p}\mathrm{i}}={\left({e}^{2}n'_{\mathrm{i}}/{\varepsilon }_{0}{M}_{\mathrm{i}}\right)}^{1/2} , we can determine the minimum ion escape velocity as:

    {u}_{\mathrm{i}}\geqslant {\omega }_{\mathrm{p}\mathrm{i}}\frac{\varPhi }{{\left[{E}_{0}^{2}+{\left(\frac{\varPhi }{{\lambda }_{\mathrm{D}\mathrm{e}}}\right)}^{2}\right]}^{\frac{1}{2}}} . (41)

    The key factors determining the characteristics of equation (41) are {E}_{0} and \varPhi /{\lambda }_{\mathrm{D}\mathrm{e}} . In relation to this, two approaches are possible. The first is when the electric field at the open boundary shares the electrical characteristics of the surrounding closed boundaries. It is well known that electric boundary conditions are required at the sheath edge to smoothly connect the electric field distributions of the presheath region and the non-neutral ionic sheath [24, 25]. The magnitude of this electric field is known as {E}_{\mathrm{s}}={T}_{\mathrm{e}}/{\lambda }_{\mathrm{D}\mathrm{e}} , which is derived from the equilibrium between plasma electrons and the electric field at the plasma-sheath interface. Assuming that the width of the open boundary applied in the plasma reactor is sufficiently narrow so that the electric field {E}_{\mathrm{s}} formed by the sheath edge along the bounded wall is equally shared in the open boundary region, equation (41) can be expressed as follows:

    {u}_{\mathrm{i}}\geqslant {\omega }_{\mathrm{p}\mathrm{i}}\frac{\varPhi }{{\left[{\left(\dfrac{{T}_{\mathrm{e}}}{{\lambda }_{\mathrm{D}\mathrm{e}}}\right)}^{2}+{\left(\dfrac{\varPhi }{{\lambda }_{\mathrm{D}\mathrm{e}}}\right)}^{2}\right]}^{\frac{1}{2}}} . (42)

    To ensure the validity of the Taylor expansion of equation (37), the conditions \varPhi \ll {T}_{\mathrm{e}} must be satisfied. Then, the minimum escape velocity of ions is simplified as:

    {u}_{\mathrm{i}}\geqslant {\omega }_{\mathrm{p}\mathrm{i}}{\lambda }_{\mathrm{D}\mathrm{e}}\frac{\varPhi }{{T}_{\mathrm{e}}} . (43)

    By rearranging equation (43) using {N}_{u}={u}_{\mathrm{i}} / {u}_{\mathrm{B}} , we obtain:

    {N}_{u}=\frac{{u}_{\mathrm{i}}}{{u}_{\mathrm{B}}}\geqslant {\left(\frac{n'_{\mathrm{i}}}{n'_{\mathrm{e}}}\right)}^{\frac{1}{2}}\left(\frac{\varPhi }{{T}_{\mathrm{e}}}\right) . (44)

    For equation (44) to converge to the classical limit {N}_{u} = 1, the following condition must be satisfied.

    {\left(\frac{n'_{\mathrm{e}}}{n'_{\mathrm{i}}}\right)}^{\frac{1}{2}}\geqslant \left(\frac{\varPhi }{{T}_{\mathrm{e}}}\right)\cong 0 . (45)

    Equation (45) always holds at the plasma edge where the condition \varPhi \ll {T}_{\mathrm{e}} is satisfied. Therefore, the assumed sheath edge electric field {E}_{\mathrm{s}}={T}_{\mathrm{e}}/{\lambda }_{\mathrm{D}\mathrm{e}} in equation (42) allows equation (41) to satisfy the Bohm criterion.

    The second approach is when the electric field satisfies {E}_{0}^{2}\ll {\left(\varPhi /{\lambda }_{\mathrm{D}\mathrm{e}}\right)}^{2} . In this approximation, equation (41) can be approximated as follows:

    {u}_{\mathrm{i}}\geqslant {\omega }_{\mathrm{p}\mathrm{i}}{\lambda }_{\mathrm{D}\mathrm{e}} . (46)

    Here, this minimum ion escape velocity must be greater than the product of the ion plasma frequency and the electron Debye length. Physically, the ion’s displacement during its oscillation period must be equal to or greater than the electron Debye length. By rearranging equation (46) using {N}_{u}={u}_{\mathrm{i}} / {u}_{\mathrm{B}} , we obtain:

    {N}_{u}=\frac{{u}_{\mathrm{i}}}{{u}_{\mathrm{B}}}\geqslant {\left(\frac{n'_{\mathrm{i}}}{n'_{\mathrm{e}}}\right)}^{\frac{1}{2}} . (47)

    The normalized ion escape velocity {N}_{u} passing through the open boundary is determined by {\left(n'_{\mathrm{i}}/n'_{\mathrm{e}}\right)}^{1/2} . Considering the condition n'_{\mathrm{e}}\leqslant n'_{\mathrm{i}} at the plasma edge, equation (47) does not approximate the classical limit {N}_{u} = 1. The condition {E}_{0}^{2}\ll {\left(\varPhi /{\lambda }_{\mathrm{D}\mathrm{e}}\right)}^{2} used in deriving equation (47) minimizes the electric field at the open boundary. Consequently, ions passing through the open boundary do not accelerate sufficiently. Therefore, ions entering the open boundary must have velocities exceeding {\left(n'_{\mathrm{i}}/n'_{\mathrm{e}}\right)}^{1/2}{u}_{\mathrm{B}} to satisfy the flux balance \varGamma '_{\mathrm{L},\mathrm{e}}=\varGamma '_{\mathrm{L},\mathrm{i}} . This mathematical criterion arises from the flux balance required to keep the bulk plasma neutral. Finally, solutions to the particle balance equation (equation (14)) and the energy balance equation (equation (27)) for a locally bounded plasma can be determined using equations (44) and (47).

    In this study, we developed new particle and energy balance equations that are applicable to locally-bounded plasmas. Using these equations, we studied changes in electron temperature and density in response to the unbounded plasma loss area and ion loss velocity. The basis of the newly developed particle balance equation is the equilibrium between the plasma loss parameters ( {u}_{\mathrm{i}} , A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}}) and plasma volume ionization {\nu }_{\mathrm{i}\mathrm{z}}\propto \mathrm{e}\mathrm{x}\mathrm{p}\left(-{\varepsilon}_{\mathrm{i}\mathrm{z}}/{T}_{\mathrm{e}}\right) . From this equilibrium, we analyzed the impact of the plasma loss parameters ( {u}_{\mathrm{i}} , A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} ) on the electron temperature. In the newly developed energy balance equation, the key consideration is the equilibrium between the RF power supplied to the plasma and the kinetic energy loss through the heterogeneous boundary. This heterogeneous boundary changes the characteristics of plasma wall loss, and directly affects plasma density variations. The most important input parameter for the particle and energy balance equations is the ion escape velocity through the open reactor boundary. To determine this, we developed new electric potential equations that connect the bulk plasma with the open boundary, and mathematically proposed a minimum escape velocity for ions. When {{E}_{0}}^{2}\ll {\left(\varPhi /{\lambda }_{\mathrm{D}\mathrm{e}}\right)}^{2} , we showed that the minimum velocity of ions escaping through the open boundary is {u}_{\mathrm{i}}\geqslant {\omega }_{\mathrm{p}\mathrm{i}}{\lambda }_{\mathrm{D}\mathrm{e}} . This allows us to define the plasma wall loss characteristics of a plasma reactor that includes a heterogeneous boundary.

    The uncertainty of core variables ( {u}_{\mathrm{i}} and A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} ) significantly impacts the calculation of electron temperature and electron density. Typically, the plasma potential can vary depending on the characteristics of the plasma source, potentially influencing the ion escape velocity through A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} . Additionally, the structure of the reactor’s open boundary can distort ion paths and ion escape velocities. These hidden variables primarily affect {u}_{\mathrm{i}} . In conclusion, the uncertainty of {u}_{\mathrm{i}} is expected to be greater than that of A'_{\mathrm{L},\mathrm{e}\mathrm{f}\mathrm{f}} , which will directly influence the accuracy of predictions for electron temperature and electron density.

    One important assumption in this study is the low-pressure discharge condition satisfying “ {\lambda }_{\mathrm{i}}\gg reactor scale”. This condition ensures uniform volume ionization in the reactor. However, as the discharge pressure increases such that conditions reach “ {\lambda }_{\mathrm{i}} < reactor scale”, localized plasma is generated due to increased electron-neutral gas collisions. In such cases, equations (14) and (27) are inadequate for predicting electron temperature and electron density within the reactor. To validate the applicability of equations (14) and (27) under high-pressure discharge conditions, experimental verification of the theory is necessary. In this regard, measuring the escape velocity of ions with respect to plasma discharge pressure will be the most crucial verification process going forward. This validation will reveal how unbounded structures such as plasma confinement rings and gas baffles affect electron temperature and density.

    In developing semiconductor equipment, the loss area of the locally bounded plasma can be a key factor for controlling the electron density and electron temperature. Typically, the electron density and electron temperature of the plasma directly impacts parameters such as etch selectivity, etch rate, and etch wall profile angle [2630]. To control these factors, it is necessary to optimize process and equipment parameters, including RF frequency, RF power, gas pressure, and etch gases. Considering the unbounded plasma loss area as the primary design parameter for plasma reactor performance allows for more advanced plasma equipment capable of controlling electron density and temperature to be developed.

  • [1]
    Wigner E P 1954 Prog. Theor. Phys. 11 437 doi: 10.1143/PTP.11.437
    [2]
    Appleton J P and Bray K N C 1964 J. Fluid Mech. 20 659 doi: 10.1017/S0022112064001458
    [3]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd ed (Hoboken: Wiley) p. 37, 168, 171, 327, 333
    [4]
    Hurlbatt A et al 2017 Plasma Process. Polym. 14 1600138 doi: 10.1002/ppap.201600138
    [5]
    Magaldi B et al 2022 Plasma 5 324 doi: 10.3390/plasma5030025
    [6]
    Alves L L and Tejero-Del-caz A 2023 Plasma Sources Sci. Technol. 32 054003 doi: 10.1088/1361-6595/acce96
    [7]
    Chung K J et al 2014 Rev. Sci. Instrum. 85 02B119 doi: 10.1063/1.4842316
    [8]
    Yang J H et al 2022 Plasma Sources Sci. Technol. 31 095014 doi: 10.1088/1361-6595/ac8ed0
    [9]
    Vass M et al 2021 Plasma Sources Sci. Technol. 30 065015 doi: 10.1088/1361-6595/ac0486
    [10]
    Donnelly V M and Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825 doi: 10.1116/1.4819316
    [11]
    Cirigliano P 2005 Confinement ring drive Fremont Lam Research Corporation US 7,364,623 B2
    [12]
    Kellogg M C, Marakhtanov A and Dhindsa R 2010 C-shaped confinement ring for a plasma processing chamber Fremont Lam Research Corporation US 8,826,855 B2
    [13]
    Jun H S 2013 Jpn. J. Appl. Phys. 52 066203 doi: 10.7567/JJAP.52.066203
    [14]
    Cui Y Q et al 2019 J. Micromech. Microeng. 29 105010 doi: 10.1088/1361-6439/ab3602
    [15]
    Zhu S K et al 2023 Processes 11 2120 doi: 10.3390/pr11072120
    [16]
    Lin T K et al 2017 Nanomaterials 7 183 doi: 10.3390/nano7070183
    [17]
    Ma T Y et al 2017 J. Vac. Sci. Technol. A 35 031303 doi: 10.1116/1.4978552
    [18]
    Chabert P and Braithwaite N 2011 Physics of Radio Frequency Plasmas (Cambridge: Cambridge University Press) p. 29, 32, 91
    [19]
    Kolobov V and Godyak V 2019 Phys. Plasmas 26 060601 doi: 10.1063/1.5093199
    [20]
    Kono M and Pécseli H L 2024 Phys. Plasmas 31 023508 doi: 10.1063/5.0176287
    [21]
    Griffiths D J 2012 Introduction to Electrodynamics 4th ed (Boston: Pearson) p. 71
    [22]
    Corless R M et al 1996 Adv. Comput. Math. 5 329 doi: 10.1007/BF02124750
    [23]
    Karnopp J et al 2022 Plasma 5 30 doi: 10.3390/plasma5010003
    [24]
    Godyak V A and Sternberg N 1990 IEEE Trans. Plasma Sci. 18 159 doi: 10.1109/27.45519
    [25]
    Godyak V A and Sternberg N 2003 IEEE Trans. Plasma Sci. 31 303 doi: 10.1109/TPS.2003.809282
    [26]
    Abe H, Yoneda M and Fujiwara N 2008 Jpn. J. Appl. Phys. 47 1435 doi: 10.1143/JJAP.47.1435
    [27]
    Lee H J et al 2023 Appl. Surf. Sci. 639 158190 doi: 10.1016/j.apsusc.2023.158190
    [28]
    Sui J et al 2016 Plasma Sci. Technol. 18 666 doi: 10.1088/1009-0630/18/6/14
    [29]
    Hsiao S N et al 2023 Vacuum 210 111863 doi: 10.1016/j.vacuum.2023.111863
    [30]
    Kim D H, Choi J E and Hong S J 2021 Plasma Sci. Technol. 23 125501 doi: 10.1088/2058-6272/ac24f4
  • Related Articles

    [1]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [2]Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547
    [3]Xingmin SHI (石兴民), Jinren LIU (刘进仁), Guimin XU (许桂敏), Yueming WU (吴月明), Lingge GAO (高菱鸽), Xiaoyan LI (李晓艳), Yang YANG (杨阳), Guanjun ZHANG (张冠军). Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 44004-044004. DOI: 10.1088/2058-6272/aa9b78
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [6]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [7]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [8]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [9]ZHENG Pingwei(郑平卫), GONG Xueyu(龚学余), YU Jun(余俊), DU Dan(杜丹). Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas[J]. Plasma Science and Technology, 2014, 16(11): 1000-1006. DOI: 10.1088/1009-0630/16/11/02
    [10]CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
  • Cited by

    Periodical cited type(24)

    1. Li, C., Zhao, T., Ren, W. et al. Quantitative analysis of copper-molybdenum slurries based on low energy pulse laser, combined with artificial neural network and principal component analysis. Minerals Engineering, 2024. DOI:10.1016/j.mineng.2024.109010
    2. Spencer, J., Squires, B., McWilliams, B. et al. Laser induced breakdown spectroscopy for composition monitoring of graded Al–Cu alloy surface. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.131375
    3. Zeng, Q.-D., Chen, G.-H., Li, W.-X. et al. Classification of Special Steel Based on LIBS Combined With Particle Swarm Optimization and Support Vector Machine | [基于粒子群M支持向量机算法的激光诱导 击穿光谱钢铁快速检测与分类]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(6): 1559-1565. DOI:10.3964/j.issn.1000-0593(2024)06-1559-07
    4. Han, B., Chen, Z., Feng, J. et al. Identification and classification of metal copper based on laser-induced breakdown spectroscopy. Journal of Laser Applications, 2023, 35(3): 032011. DOI:10.2351/7.0001051
    5. Akram, M.A., Holthe, R., Ringen, G. Rapid Sorting of Post-consumer Scrap Aluminium Alloys Based on Laser-Induced Breakdown Spectroscopy (LIBS). IFIP Advances in Information and Communication Technology, 2023. DOI:10.1007/978-3-031-43688-8_18
    6. Zeng, Q., Chen, G., Li, W. et al. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine. Plasma Science and Technology, 2022, 24(8): 084009. DOI:10.1088/2058-6272/ac72e3
    7. Xu, C., Li, F., Chen, F. et al. Rapid Classification of Laser Induced Breakdown Spectroscopy of Titanium Alloys | [钛合金的激光诱导击穿光谱快速分类]. Guangzi Xuebao/Acta Photonica Sinica, 2022, 51(4): 176-186. DOI:10.3788/gzxb20225104.0430001
    8. Chen, G., Zeng, Q., Li, W. et al. Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network. Optics Express, 2022, 30(6): 9428-9440. DOI:10.1364/OE.451969
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Chen, T., Sun, L., Yu, H. et al. Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry. Applied Optics, 2022, 61(7): D22-D29. DOI:10.1364/AO.441098
    11. Aberkane, S.M., Melikechi, N., Yahiaoui, K. LIBS Spectral Treatment. Chemometrics and Numerical Methods in LIBS, 2022. DOI:10.1002/9781119759614.ch4
    12. Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274
    13. You, W., Xia, Y.-P., Huang, Y.-T. et al. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree | [基于CART回归树的LIBS特征变量选择方法研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(10): 3240-3244. DOI:10.3964/j.issn.1000-0593(2021)10-3240-05
    14. Kim, H., Lee, J., Srivastava, E. et al. Front-end signal processing for metal scrap classification using online measurements based on laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106282
    15. Loibl, A., Tercero Espinoza, L.A. Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 2021. DOI:10.1016/j.resconrec.2021.105462
    16. Wang, Y.-W., Zhang, Y., Chen, X.-F. et al. Application progress of laser-induced breakdown spectroscopy in online analysis of metal materials | [激光诱导击穿光谱在金属材料在线分析方面的应用进展]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 7-13. DOI:10.13228/j.boyuan.issn1000-7571.011179
    17. Zhang, Y., Sun, C., Yue, Z. et al. Correlation-based carbon determination in steel without explicitly involving carbon-related emission lines in a LIBS spectrum. Optics Express, 2020, 28(21): 32019-32032. DOI:10.1364/OE.404722
    18. Ytsma, C.R., Knudson, C.A., Dyar, M.D. et al. Accuracies and detection limits of major, minor, and trace element quantification in rocks by portable laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105946
    19. Kim, E., Kim, Y., Srivastava, E. et al. Soft classification scheme with pre-cluster-based regression for identification of same-base alloys using laser-induced breakdown spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2020. DOI:10.1016/j.chemolab.2020.104072
    20. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    21. Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48
    22. Srivastava, E., Jang, H., Shin, S. et al. Weighted-averaging-based classification of laser-induced breakdown spectroscopy measurements using most informative spectral lines. Plasma Science and Technology, 2020, 22(1): 015501. DOI:10.1088/2058-6272/ab481e
    23. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    24. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Figures(6)  /  Tables(1)

    Article views (38) PDF downloads (16) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return