Advanced Search+
Rendeng Tang, Jianxing Liu, Hengxin Guo, Congcong Yuan, Xiaoxuan Huang, Zhengdong Li, Zongbiao Ye, Jianjun Wei, Fujun Gou. Profile studies of lithium vapor under high-density plasma irradiation using embedded multichannel capillary porous[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc185
Citation: Rendeng Tang, Jianxing Liu, Hengxin Guo, Congcong Yuan, Xiaoxuan Huang, Zhengdong Li, Zongbiao Ye, Jianjun Wei, Fujun Gou. Profile studies of lithium vapor under high-density plasma irradiation using embedded multichannel capillary porous[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc185

Profile studies of lithium vapor under high-density plasma irradiation using embedded multichannel capillary porous

More Information
  • Received Date: August 22, 2024
  • Revised Date: March 12, 2025
  • Accepted Date: March 16, 2025
  • Available Online: March 17, 2025
  • Faced with complex operational environments, liquid metal divertors are considered alternative solutions to traditional solid divertors. Experiments have been conducted using a self-designed embedded multichannel capillary porous structure (EM-CPS) for plasma irradiation of lithium-prefilled EM-CPS in the high-density linear plasma device (SCU-PSI). The optical image analysis of the interaction region between the plasma and lithium vapor shows that the region is not a regular geometric shape and the point of strongest light emission appears 1-2 cm in front of the target rather than on its surface. The irregularity is due to the uneven distribution and density of the lithium vapor, as well as the radial and axial attenuation of the plasma. As the plasma discharge parameters increase, the vapor profile initially expands globally and then contracts locally, with the point of strongest light emission gradually moving towards the target surface. The spectral lines Li 670.78 nm and Ar 763.51 nm in the interaction region are produced by de-excitation. These lines gradually decrease in intensity along the axial direction, which is close to the trend of light emission intensity that initially increases and then decreases along the same direction. These findings provide a reference for studying the interaction mechanism between plasma and liquid lithium capillary porous structures in linear plasma devices and future tokamak.
  • Related Articles

    [1]Zhian HAO, Jianfei LI, Bin XU, Jingfeng YAO, Chengxun YUAN, Ying WANG, Zhongxiang ZHOU, Xiaoou WANG. Composite wave-absorbing structure combining thin plasma and metasurface[J]. Plasma Science and Technology, 2023, 25(4): 045504. DOI: 10.1088/2058-6272/aca13e
    [2]Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
    [3]Xiaoxing ZHANG (张晓星), Yuan TIAN (田远), Zhaolun CUI (崔兆仑), Ju TANG (唐炬). Plasma-assisted abatement of SF6 in a packed bed plasma reactor: understanding the effect of gas composition[J]. Plasma Science and Technology, 2020, 22(5): 55502-055502. DOI: 10.1088/2058-6272/ab65b2
    [4]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [5]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [6]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [7]YAN Shaojian(闫少健), TIAN Canxin(田灿鑫), HUANG Zhihong(黄志宏), YANG Bing(杨兵), FU Dejun(付德君). Structure and Mechanical Properties of CrTiAlN/TiAlN Composite Coatings Deposited by Multi-Arc Ion Plating[J]. Plasma Science and Technology, 2014, 16(10): 969-973. DOI: 10.1088/1009-0630/16/10/12
    [8]HAN Xiang (韩翔), LING Bili (凌必利), GAO Xiang (高翔), LIU Yong (刘永), TI Ang (提昂), LI Erzhong (李二众), XU Liqing (徐立清), WANG Yumin (王嵎民). Measurement of Magnetic Island Width by Multi-Channel ECE Radiometer on HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 217-220. DOI: 10.1088/1009-0630/15/3/05
    [9]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
    [10]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
  • Cited by

    Periodical cited type(3)

    1. Jdaini, O., Missaoui, A., El Bojaddaini, M. et al. Comparative Analysis of Plasma Sheath Characteristics in One-Dimensional and Three-Dimensional Velocity Spaces Governing Nonextensive Electron Density. Contributions to Plasma Physics, 2025. DOI:10.1002/ctpp.202400094
    2. Eljabiri, Z., El Ghani, O., Driouch, I. et al. Total secondary emission effect on the complex plasma sheath with superextensive electrons. Journal of Plasma Physics, 2024, 90(5): 905900506. DOI:10.1017/S0022377824001193
    3. El Bojaddaini, M., El Kaouini, M., Chatei, H. Sheath structure behavior in collisional non-extensive plasma with negative ions. European Physical Journal Plus, 2024, 139(5): 373. DOI:10.1140/epjp/s13360-024-05112-3
    1. Jdaini, O., Missaoui, A., El Bojaddaini, M. et al. Comparative Analysis of Plasma Sheath Characteristics in One-Dimensional and Three-Dimensional Velocity Spaces Governing Nonextensive Electron Density. Contributions to Plasma Physics, 2025. DOI:10.1002/ctpp.202400094
    2. Eljabiri, Z., El Ghani, O., Driouch, I. et al. Total secondary emission effect on the complex plasma sheath with superextensive electrons. Journal of Plasma Physics, 2024, 90(5): 905900506. DOI:10.1017/S0022377824001193
    3. El Bojaddaini, M., El Kaouini, M., Chatei, H. Sheath structure behavior in collisional non-extensive plasma with negative ions. European Physical Journal Plus, 2024, 139(5): 373. DOI:10.1140/epjp/s13360-024-05112-3

    Other cited types(0)

Catalog

    Article views (2) PDF downloads (1) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return