Advanced Search+
WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
Citation: WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07

Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis

Funds: supported by National Natural Science Foundation of China (Nos. 11105067 and 51366012) and Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 2013BCB23008)
More Information
  • Received Date: August 27, 2013
  • The electron drift velocity, electron energy distribution function (EEDF), density- normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF 6 -O 2 and SF 6 -Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10 −17 V·cm2 ) and the SF 6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF 6 content in the mixtures. Moreover, the E/N cr values in SF 6 -Air mixtures are higher than those in SF 6 -O 2 mixtures and the calculated value E/N cr in SF 6 -O 2 and SF 6 -Air mixtures is lower than the measured value in SF 6 -N 2 . Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.
  • 1 Chang J S, Lawless P A, Yamamoto T. 1991, IEEE Transactions on Plasma Science, 19: 1152
    2 Mason N J, Skalny J D, Hadj-Ziane S. 2002, Czechoslovak Journal of Physics, 52: 85
    3 Skalny J D, Mikoviny T, Mason N J, et al. 2004, Ozone-Science & Engineering, 24: 29
    4 Wei L S, Dong G P, Zhang Y F, et al. 2013, High Voltage Engineering, 39: 2520
    5 Wei L S, Hu Z J, Zhang Y F, et al. 2010, Ozone-Science & Engineering, 32: 444
    6 Okazaki S, Sugimitsu H, Niwa H, et al. 1988, Ozone-Science & Engineering, 10: 137
    7 Novoselov Y N, Ryzhov V V, Suslov A I. 1999, Technical Physics, 44: 44
    8 Hernandez-Avila J L, Urquijo J D. 2006, Journal of Physics D: Applied Physics, 39: 647
    9 Cekmen Z, Dincer M. 2009, Journal of Physics D: Applied Physics, 42: 145208
    10 Pinheiro M J, Loureiro J. 2002, Journal of Physics D: Applied Physics, 35: 3077
    11 Itoh H, Miyachi T, Kawaguchi M, et al. 1991, Journal of Physics D: Applied Physics, 24: 277
    12 Ingold J H. 1989, Physical Review A, 40: 3855
    13 Morgan W L, Penetrante B M. 1990, Computer Physics Communications, 58: 127
    14 Holstein T. 1946, Physical Review, 70: 367
    15 Yousfi M, Segur P, Vassiliadis T. 1985, Journal of Physics D: Applied Physics, 18: 359
    16 Kline L, Davies D, Chen C, et al. 1979, Journal of Applied Physics, 50: 6789
    17 Yoshizawa T, Sakai Y, Tagashira H, et al. 1979, Journal of Physics D: Applied Physics, 12: 1839
    18 Christophorou L G, Olthoff J K. 2000, Journal of Physical and Chemical Reference Data, 29: 267
    19 Phelps A, Van B R. 1988, Journal of Applied Physics, 64: 4269
    20 Phelps A, Pitchford L. 1985, Physical Review A, 31: 2932
    21 Lawton S, Phelps A. 1978, The Journal of Chemical Physics, 69: 1055
    22 Phelps A. 1985, Tabulations of collision cross sections and calculated transport and reaction coeffcients for electrons collisions with O2. JILA Information Center Report No. 28. University of Colorado, Colorado
    23 Pitchford L, ONeil S, Rumble J J. 1981, Physical Review A, 23: 294
    24 Itoh H, Miura Y, Ikuta N, et al. 1988, Journal of Physics D: Applied Physics, 21: 922
    25 Qiu Y, Xiao D. 1994, Journal of Physics D: Applied Physics, 27: 2663
    26 Loeb L B. 1955, Basic processes of gaseous electronics. University of California Press, California
    27 Itoh H, Matsumura T, Satoh K, et al. 1993, Journal of Physics D: Applied Physics, 26: 1975
    28 Hagelaar G J M, Pitchford L C. 2005, Plasma Sources Science & Technology, 14: 722
    29 Aschwanden T. 1985, Die ermittlung physikalischer entladungsparameter in isoliergasen und isoliergas-gemischen mit einer verbesserten swarm-methode [Ph.D]. ETH Zurich
    30 Yachi S, Kitamura Y, Kitamori K, et al. 1988, Journal of Physics D: Applied Physics, 21: 914
  • Related Articles

    [1]Zhiwei LI, Ting LEI, Yu SU, Xiuyuan YAO, Bingxue YANG, Delong LIU, Fangcheng LV, Yujian DING. Dynamic propagation velocity of a positive streamer in a 3 m air gap under lightning impulse voltage[J]. Plasma Science and Technology, 2024, 26(4): 045501. DOI: 10.1088/2058-6272/ad0d51
    [2]Yunxiao WEI (魏云逍), Zhe GAO (高喆). Effect of background fluctuation on velocity diagnostics by Mach probe[J]. Plasma Science and Technology, 2020, 22(12): 125102. DOI: 10.1088/2058-6272/abbb79
    [3]Chi-Shung YIP (叶孜崇), Wei ZHANG (张炜), Guosheng XU (徐国盛), Noah HERSHKOWITZ. Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs[J]. Plasma Science and Technology, 2020, 22(8): 85404-085404. DOI: 10.1088/2058-6272/ab7f3d
    [4]Hirotake SUGAWARA. Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields[J]. Plasma Science and Technology, 2019, 21(9): 94001-094001. DOI: 10.1088/2058-6272/ab20e0
    [5]REN Wanbin (任万滨), CHANG Cheng (常成), CHEN Yu (陈宇). Formation Process of Intermittent Molten Bridge Between Au-Plated Contacts at Super Low Breaking Velocity[J]. Plasma Science and Technology, 2016, 18(3): 236-240. DOI: 10.1088/1009-0630/18/3/04
    [6]CHANG Yunlong (常云龙), LIU Mingxu (刘明旭), LU Lin (路林), A. S. BABKIN, Bo-Young LEE. The Influence of Longitudinal Magnetic Field on the CO2 Arc Shape[J]. Plasma Science and Technology, 2015, 17(4): 321-326. DOI: 10.1088/1009-0630/17/4/11
    [7]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [8]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [9]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02
    [10]GUO Jun(郭俊). The Effects of Relative Drift Velocities Between Proton and He2+ on the Magnetic Spectral Signatures in the Plasma Depletion Layer[J]. Plasma Science and Technology, 2011, 13(5): 557-560.

Catalog

    Article views (208) PDF downloads (1465) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return