Advanced Search+
Yunxiao WEI (魏云逍), Zhe GAO (高喆). Effect of background fluctuation on velocity diagnostics by Mach probe[J]. Plasma Science and Technology, 2020, 22(12): 125102. DOI: 10.1088/2058-6272/abbb79
Citation: Yunxiao WEI (魏云逍), Zhe GAO (高喆). Effect of background fluctuation on velocity diagnostics by Mach probe[J]. Plasma Science and Technology, 2020, 22(12): 125102. DOI: 10.1088/2058-6272/abbb79

Effect of background fluctuation on velocity diagnostics by Mach probe

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11827810 and 11875177), Inter- national Atomic Energy Agency Research Contract No. 22733 and the National Ten Thousand Talent Program.
More Information
  • Received Date: August 05, 2020
  • Revised Date: September 22, 2020
  • Accepted Date: September 23, 2020
  • The effect of background fluctuation on velocity diagnostics is discussed and studied. The kinetic theory of Mach probe (MP) and the theory of BGK mode are combined to evaluate how the measurement of MP is affected by electrostatics fluctuation. It is found that the quantity of speed by the MP model is closer to the effective velocity in the picture of momentum flux rather than the real mean velocity, while, with high fluctuation, the fitting parameter of MP's exponential formula should be corrected.
  • [1]
    Bondeson A and Ward D J 1994 Phys. Rev. Lett. 72 2709
    [2]
    Rice J E et al 2001 Nucl. Fusion 41 277
    [3]
    Diamond P H et al 2013 Nucl. Fusion 53 104019
    [4]
    Hender T C et al 2007 Nucl. Fusion 47 S128
    [5]
    Myra J R et al 2004 Phys. Plasmas 11 1786
    [6]
    Garbet X et al 2013 Phys. Plasmas 20 072502
    [7]
    Wang L and Diamond P H 2013 Phys. Rev. Lett. 110 265006
    [8]
    Chung K S 2012 Plasma Sources Sci. Technol. 21 063001
    [9]
    Fonck R J et al 1984 Phys. Rev. A 29 3288
    [10]
    Yu J H et al 2007 J. Nucl. Mater. 363–365 728
    [11]
    Gao Z, Fisch N J and Qin H 2006 Phys. Plasmas 13 112307
    [12]
    Chung K S and Hutchinson I H 1988 Phys. Rev. A 38 4721
    [13]
    Stangeby P C 1984 Phys. Fluids 27 2699
    [14]
    Hutchinson I H 1988 Phys. Rev. A
    [15]
    Chung K S 1989 Ion Collection by Probing Objects in Flowing Magnetized Plasmas (Cambridge, MA: Massachusetts Institute of Technology)
    [16]
    Gulick S L et al 1990 J. Nucl. Mater. 176–177 1059
    [17]
    Erents S K et al 2000 Plasma Phys. Control. Fusion 42 905
    [18]
    Wang W H et al 2004 Plasma Phys. Control. Fusion 47 1
    [19]
    Gonçalves B et al 2006 Phys. Rev. Lett. 96 145001
    [20]
    Bernstein I B, Greene J M and Kruskal M D 1957 Phys. Rev.108 546
    [21]
    Schamel H 1972 J. Plasma Phys. 7 1
    [22]
    Schamel H 1972 Plasma Phys. 14 905
    [23]
    Surko C M and Slusher R E 1983 Science 221 817
    [24]
    Suckewer S et al 1979 Phys. Rev. Lett. 43 207
  • Related Articles

    [1]Tianbao MA, Yauheni KALENKOVICH, Valeriy ROKACH, Anatoly OSIPOV. Generation of low-temperature plasma by pulse-width modulated signals and monitoring of the interaction thereof with the surface of objects[J]. Plasma Science and Technology, 2025, 27(1): 015403. DOI: 10.1088/2058-6272/ad8a38
    [2]Jiachen TONG, Haiying LI, Bin XU, Songyang WU, Lu BAI. Excitation and power spectrum analysis of electromagnetic radiation for the plasma wake of reentry vehicles[J]. Plasma Science and Technology, 2023, 25(5): 055301. DOI: 10.1088/2058-6272/aca7ad
    [3]Yaocong XIE, Xiaoping LI, Fangfang SHEN, Bowen BAI, Yanming LIU, Xuyang CHEN, Lei SHI. Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath[J]. Plasma Science and Technology, 2022, 24(3): 035002. DOI: 10.1088/2058-6272/ac1d98
    [4]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [7]SHI Lei (石磊), ZHAO Lei (赵蕾), YAO Bo (姚博), LI Xiaoping (李小平). Telemetry Channel Capacity Assessment for Reentry Vehicles in Plasma Sheath Environment[J]. Plasma Science and Technology, 2015, 17(12): 1006-1012. DOI: 10.1088/1009-0630/17/12/05
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [10]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02

Catalog

    Article views (261) PDF downloads (351) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return