Advanced Search+
WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14
Citation: WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14

Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator

Funds: supported by National Natural Science Foundation of China (No. 11075210) and the Special Financial Grant from the China Postdoctoral Science Foundation (No. 201104761)
More Information
  • Received Date: September 25, 2014
  • The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi?crowaves (HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency (RF) breakdown in the slow wave structure (SWS) section, an X-band MILO is presented and investigated nu?merically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized, respectively.
  • 1 Haworth M D, Allen K E, Baca G, et al. 1997, Proc.SPIE, 28: 3158 2 Lemke R W, Calico S E, Clark M C. 1997, IEEE Trans.Plasma Sci., 25: 364 3 Eastwood J W, Hawkins K C, Hook M P. 1998, IEEE Trans. Plasma Sci., 26: 698 4 Balakirev V A, Marov P I, Sotnikov G V, et al. 1999,Generation of UHF oscillations in slowing down lines with magnetic insulation. IEEE International University Conference on Electronics and Radio Physics of Ultra-High Frequencies, St Petersburg 5 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Rev. Sci.Instrum., 79: 034703 6 Fan Y W, Zhong H H, Li Z Q, et al. 2007, J. Appl.Phys., 102: 103304 7 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Phys. Plasmas, 15: 083108 8 Fan Y W, Zhong H H, Li Z Q, et al. 2011, IEEE Trans.Plasma Sci., 39: 540 9 Fan Y W, Shu T, Liu Y G, et al. 2005, Chin. Phys.Lett., 22: 164 10 Fan Y W, Yuan C W, Zhong H H, et al. 2007, IEEE Trans. Plasma Sci., 35: 379 11 Fan Y W, Yuan C W, Zhong H H, et al. 2007, IEEE Trans. Plasma Sci., 35: 1075 12 Fan Y W, Zhong H H, Zhang J D, et al. 2014, Rev.Sci. Instrum., 85: 053512 13 Yang Y L, Ding W. 2001, High Power Laser and Particle Beams, 13: 76 14 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Phys. Plasmas, 15: 083102 15 Cousin R, Larour J, Gardelle J, et al. 2007, IEEE Trans. Plasma Sci., 35: 1467 16 Yang W Y. 2008, IEEE Trans. Plasma Sci., 36: 2801 17 Fan Y W, Zhong H H, Yang H W, et al. 2008, J. Appl.Phys., 103: 123301 18 Ju J C, Fan Y W Zhong H H, et al. 2009, J. Appl.Phys., 16: 073103 19 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Chinese Physics B, 17: 1674 20 Fan Y W, Zhong H H, Zhang S Y, et al. 2006, High Power Laser and Particle Beams, 18: 1001 21 Calico S E, Clark M C, Lemke R W, et al. 1995, Proc. SPIE, 2557: 50 22 Tarakanov V P. 1992, User’s Manual for Code KARAT. Springfield, VA: Berkeley Research Associates 23 Adler R J. 1989, Pulse Power Formulary. North Star Research Corporation, Albuquerque 24 Shultis J K, Faw R E. 2007, Fundamentals of Nuclear Science and Engineering (Second Edition). CRP Press, Boca Raton 25 Mesyats G A. 2000, Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Ark. Nauka, Moscow, Russia 26 Mesyats G A. 2007, Physics of Vacuum Discharge and High Pulsed Power Technologies (Chinese version, translated by G. Z. Li). National Defense Industry, Bei Jing (in Chinese) 27 Sanford T W L, Halbieib J A, Poukey J W, et al. 1989,J. Appl. Phys., 66: 10 28 Cuneo M E, Menge P R, Hanson D L, et al. 1997,IEEE Trans. Plasma Sci., 25: 229 29 Barker R J, Schamiloglu E. 2001, High-power Microwave Sources and Technologies. The Institute of Electrical and Electronics Engineer, Inc., New York 30 Elchaninov A S, Zagulov F Ya, Korovin S D. 1981,Pis’maZh. Tekh. Fiz, 7: 1168 31 Korovin S D, Mesyats G A, Pegel I V, et al. 1999,Pis’maZh. Tekh. Fiz, 25: 217 32 Song W, Cheng C H, Sun J, et al. 2010, High Power Laser and Particle Beams, 22: 1001 33 Zhang X W, Xiao R Z, Cheng C H, et al. 2011, High Power Laser and Particle Beams, 23: 1001 34 Ling J P, Zhang J D, He J T, et al. 2014, Review of Scientific Instruments, 85: 084702 35 Aleksander V G, Aleksei I K, Sergei D K, et al. 1998,IEEE Trans. Plasma Sci., 26: 3
  • Related Articles

    [1]Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb
    [2]YANG Lanlan (杨兰兰), TU Yan (屠彦), YU Yongbo (俞永波), HU Dinglan (户玎岚), ZHANG Xiong (张雄). Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet[J]. Plasma Science and Technology, 2016, 18(9): 912-917. DOI: 10.1088/1009-0630/18/9/07
    [3]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12
    [4]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [5]ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03
    [6]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]LIANG Haoming (梁浩明), XIAO Chijie (肖池阶), ZHOU Guiping(周桂萍), PU Zuyin(濮祖荫), WANG Honggang (王红刚), WANG Xiaogang (王晓钢). Alfvénic Fluctuations in an Interplanetary Coronal Mass Ejection Observed Near 1 AU[J]. Plasma Science and Technology, 2012, 14(2): 102-106. DOI: 10.1088/1009-0630/14/2/04
    [9]ZHANG Haiyan, YE Chao, NING Zhaoyuan. Dependence of Decamethylcyclopentasiloxane (DMCPS) Dissociation on Ionized Energy by Using Quadrupole Mass Spectrum[J]. Plasma Science and Technology, 2010, 12(6): 677-680.
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.

Catalog

    Article views (364) PDF downloads (968) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return