Advanced Search+
WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14
Citation: WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14

Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator

Funds: supported by National Natural Science Foundation of China (No. 11075210) and the Special Financial Grant from the China Postdoctoral Science Foundation (No. 201104761)
More Information
  • Received Date: September 25, 2014
  • The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi?crowaves (HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency (RF) breakdown in the slow wave structure (SWS) section, an X-band MILO is presented and investigated nu?merically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized, respectively.
  • 1 Haworth M D, Allen K E, Baca G, et al. 1997, Proc.SPIE, 28: 3158 2 Lemke R W, Calico S E, Clark M C. 1997, IEEE Trans.Plasma Sci., 25: 364 3 Eastwood J W, Hawkins K C, Hook M P. 1998, IEEE Trans. Plasma Sci., 26: 698 4 Balakirev V A, Marov P I, Sotnikov G V, et al. 1999,Generation of UHF oscillations in slowing down lines with magnetic insulation. IEEE International University Conference on Electronics and Radio Physics of Ultra-High Frequencies, St Petersburg 5 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Rev. Sci.Instrum., 79: 034703 6 Fan Y W, Zhong H H, Li Z Q, et al. 2007, J. Appl.Phys., 102: 103304 7 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Phys. Plasmas, 15: 083108 8 Fan Y W, Zhong H H, Li Z Q, et al. 2011, IEEE Trans.Plasma Sci., 39: 540 9 Fan Y W, Shu T, Liu Y G, et al. 2005, Chin. Phys.Lett., 22: 164 10 Fan Y W, Yuan C W, Zhong H H, et al. 2007, IEEE Trans. Plasma Sci., 35: 379 11 Fan Y W, Yuan C W, Zhong H H, et al. 2007, IEEE Trans. Plasma Sci., 35: 1075 12 Fan Y W, Zhong H H, Zhang J D, et al. 2014, Rev.Sci. Instrum., 85: 053512 13 Yang Y L, Ding W. 2001, High Power Laser and Particle Beams, 13: 76 14 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Phys. Plasmas, 15: 083102 15 Cousin R, Larour J, Gardelle J, et al. 2007, IEEE Trans. Plasma Sci., 35: 1467 16 Yang W Y. 2008, IEEE Trans. Plasma Sci., 36: 2801 17 Fan Y W, Zhong H H, Yang H W, et al. 2008, J. Appl.Phys., 103: 123301 18 Ju J C, Fan Y W Zhong H H, et al. 2009, J. Appl.Phys., 16: 073103 19 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Chinese Physics B, 17: 1674 20 Fan Y W, Zhong H H, Zhang S Y, et al. 2006, High Power Laser and Particle Beams, 18: 1001 21 Calico S E, Clark M C, Lemke R W, et al. 1995, Proc. SPIE, 2557: 50 22 Tarakanov V P. 1992, User’s Manual for Code KARAT. Springfield, VA: Berkeley Research Associates 23 Adler R J. 1989, Pulse Power Formulary. North Star Research Corporation, Albuquerque 24 Shultis J K, Faw R E. 2007, Fundamentals of Nuclear Science and Engineering (Second Edition). CRP Press, Boca Raton 25 Mesyats G A. 2000, Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Ark. Nauka, Moscow, Russia 26 Mesyats G A. 2007, Physics of Vacuum Discharge and High Pulsed Power Technologies (Chinese version, translated by G. Z. Li). National Defense Industry, Bei Jing (in Chinese) 27 Sanford T W L, Halbieib J A, Poukey J W, et al. 1989,J. Appl. Phys., 66: 10 28 Cuneo M E, Menge P R, Hanson D L, et al. 1997,IEEE Trans. Plasma Sci., 25: 229 29 Barker R J, Schamiloglu E. 2001, High-power Microwave Sources and Technologies. The Institute of Electrical and Electronics Engineer, Inc., New York 30 Elchaninov A S, Zagulov F Ya, Korovin S D. 1981,Pis’maZh. Tekh. Fiz, 7: 1168 31 Korovin S D, Mesyats G A, Pegel I V, et al. 1999,Pis’maZh. Tekh. Fiz, 25: 217 32 Song W, Cheng C H, Sun J, et al. 2010, High Power Laser and Particle Beams, 22: 1001 33 Zhang X W, Xiao R Z, Cheng C H, et al. 2011, High Power Laser and Particle Beams, 23: 1001 34 Ling J P, Zhang J D, He J T, et al. 2014, Review of Scientific Instruments, 85: 084702 35 Aleksander V G, Aleksei I K, Sergei D K, et al. 1998,IEEE Trans. Plasma Sci., 26: 3
  • Related Articles

    [1]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [2]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [3]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [4]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [5]Ying LI (李颖), Yanhong GU (谷艳红), Ying ZHANG (张莹), Yuandong LI (李远东), Yuan LU (卢渊). Analytical study of seashell using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2017, 19(2): 25501-025501. DOI: 10.1088/2058-6272/19/2/025501
    [6]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [7]CHANG Zhengshi(常正实), YAO Congwei(姚聪伟), MU Haibao(穆海宝), ZHANG Guanjun(张冠军). Study on the Property Evolution of Atmospheric Pressure Plasma Jets in Helium[J]. Plasma Science and Technology, 2014, 16(1): 83-88. DOI: 10.1088/1009-0630/16/1/18
    [8]GUO Jun (郭俊). The Evolution of Instabilities Driven by a Drift Between Ions and Electrons in Nonmagnetized Plasma[J]. Plasma Science and Technology, 2013, 15(4): 307-312. DOI: 10.1088/1009-0630/15/4/01
    [9]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [10]HU Zuquan, CHEN Yinhua, ZHENG Jugao, LIU Hao, YU Mingyang, WU Jian. Evolution of small scale density perturbations of plasma and charged aerosol particles in Polar Mesospheric Summer Echoes (PMSE) layers[J]. Plasma Science and Technology, 2011, 13(5): 550-556.

Catalog

    Article views (364) PDF downloads (968) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return