Advanced Search+
WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14
Citation: WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14

Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator

Funds: supported by National Natural Science Foundation of China (No. 11075210) and the Special Financial Grant from the China Postdoctoral Science Foundation (No. 201104761)
More Information
  • Received Date: September 25, 2014
  • The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi?crowaves (HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency (RF) breakdown in the slow wave structure (SWS) section, an X-band MILO is presented and investigated nu?merically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized, respectively.
  • 1 Haworth M D, Allen K E, Baca G, et al. 1997, Proc.SPIE, 28: 3158 2 Lemke R W, Calico S E, Clark M C. 1997, IEEE Trans.Plasma Sci., 25: 364 3 Eastwood J W, Hawkins K C, Hook M P. 1998, IEEE Trans. Plasma Sci., 26: 698 4 Balakirev V A, Marov P I, Sotnikov G V, et al. 1999,Generation of UHF oscillations in slowing down lines with magnetic insulation. IEEE International University Conference on Electronics and Radio Physics of Ultra-High Frequencies, St Petersburg 5 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Rev. Sci.Instrum., 79: 034703 6 Fan Y W, Zhong H H, Li Z Q, et al. 2007, J. Appl.Phys., 102: 103304 7 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Phys. Plasmas, 15: 083108 8 Fan Y W, Zhong H H, Li Z Q, et al. 2011, IEEE Trans.Plasma Sci., 39: 540 9 Fan Y W, Shu T, Liu Y G, et al. 2005, Chin. Phys.Lett., 22: 164 10 Fan Y W, Yuan C W, Zhong H H, et al. 2007, IEEE Trans. Plasma Sci., 35: 379 11 Fan Y W, Yuan C W, Zhong H H, et al. 2007, IEEE Trans. Plasma Sci., 35: 1075 12 Fan Y W, Zhong H H, Zhang J D, et al. 2014, Rev.Sci. Instrum., 85: 053512 13 Yang Y L, Ding W. 2001, High Power Laser and Particle Beams, 13: 76 14 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Phys. Plasmas, 15: 083102 15 Cousin R, Larour J, Gardelle J, et al. 2007, IEEE Trans. Plasma Sci., 35: 1467 16 Yang W Y. 2008, IEEE Trans. Plasma Sci., 36: 2801 17 Fan Y W, Zhong H H, Yang H W, et al. 2008, J. Appl.Phys., 103: 123301 18 Ju J C, Fan Y W Zhong H H, et al. 2009, J. Appl.Phys., 16: 073103 19 Fan Y W, Zhong H H, Li Z Q, et al. 2008, Chinese Physics B, 17: 1674 20 Fan Y W, Zhong H H, Zhang S Y, et al. 2006, High Power Laser and Particle Beams, 18: 1001 21 Calico S E, Clark M C, Lemke R W, et al. 1995, Proc. SPIE, 2557: 50 22 Tarakanov V P. 1992, User’s Manual for Code KARAT. Springfield, VA: Berkeley Research Associates 23 Adler R J. 1989, Pulse Power Formulary. North Star Research Corporation, Albuquerque 24 Shultis J K, Faw R E. 2007, Fundamentals of Nuclear Science and Engineering (Second Edition). CRP Press, Boca Raton 25 Mesyats G A. 2000, Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Ark. Nauka, Moscow, Russia 26 Mesyats G A. 2007, Physics of Vacuum Discharge and High Pulsed Power Technologies (Chinese version, translated by G. Z. Li). National Defense Industry, Bei Jing (in Chinese) 27 Sanford T W L, Halbieib J A, Poukey J W, et al. 1989,J. Appl. Phys., 66: 10 28 Cuneo M E, Menge P R, Hanson D L, et al. 1997,IEEE Trans. Plasma Sci., 25: 229 29 Barker R J, Schamiloglu E. 2001, High-power Microwave Sources and Technologies. The Institute of Electrical and Electronics Engineer, Inc., New York 30 Elchaninov A S, Zagulov F Ya, Korovin S D. 1981,Pis’maZh. Tekh. Fiz, 7: 1168 31 Korovin S D, Mesyats G A, Pegel I V, et al. 1999,Pis’maZh. Tekh. Fiz, 25: 217 32 Song W, Cheng C H, Sun J, et al. 2010, High Power Laser and Particle Beams, 22: 1001 33 Zhang X W, Xiao R Z, Cheng C H, et al. 2011, High Power Laser and Particle Beams, 23: 1001 34 Ling J P, Zhang J D, He J T, et al. 2014, Review of Scientific Instruments, 85: 084702 35 Aleksander V G, Aleksei I K, Sergei D K, et al. 1998,IEEE Trans. Plasma Sci., 26: 3
  • Related Articles

    [1]Weijie HUO, Weiguo HE, Luofeng HAN, Kangwu ZHU, Feng WANG. A study of pulsed high voltage driven hollow-cathode electron beam sources through synchronous optical trigger[J]. Plasma Science and Technology, 2024, 26(5): 055501. DOI: 10.1088/2058-6272/ad113e
    [2]Chunxia LIANG (梁春霞), Ning WANG (王宁), Zhengchao DUAN (段正超), Feng HE (何锋), Jiting OUYANG (欧阳吉庭). Experimental investigations of enhanced glow based on a pulsed hollow-cathode discharge[J]. Plasma Science and Technology, 2019, 21(2): 25401-025401. DOI: 10.1088/2058-6272/aaef49
    [3]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [4]Shoujie HE (何寿杰), Peng WANG (王鹏), Jing HA (哈静), Baoming ZHANG (张宝铭), Zhao ZHANG (张钊), Qing LI (李庆). Effects of discharge parameters on the micro-hollow cathode sustained glow discharge[J]. Plasma Science and Technology, 2018, 20(5): 54006-054006. DOI: 10.1088/2058-6272/aab54b
    [5]Mingming SUN (孙明明), Tianping ZHANG (张天平), Xiaodong WEN (温晓东), Weilong GUO (郭伟龙), Jiayao SONG (宋嘉尧). Plasma characteristics in the discharge region of a 20A emission current hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 25503-025503. DOI: 10.1088/2058-6272/aa8edb
    [6]CHEN Yuqian (陈俞钱), HU Chundong (胡纯栋), XIE Yahong (谢亚红). Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(4): 453-456. DOI: 10.1088/1009-0630/18/4/21
    [7]S. CORNISH, J. KHACHAN. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun[J]. Plasma Science and Technology, 2016, 18(2): 138-142. DOI: 10.1088/1009-0630/18/2/07
    [8]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [9]LI Shichao(李世超), HE Feng(何锋), GUO Qi(郭琦), OUYANG Jiting(欧阳吉庭). Deposition of Diamond-Like Carbon on Inner Surface by Hollow Cathode Discharge[J]. Plasma Science and Technology, 2014, 16(1): 63-67. DOI: 10.1088/1009-0630/16/1/14
    [10]D. FUKUHARA, S. NAMBA, K. KOZUE, T. YAMASAKI, K. TAKIYAMA. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor[J]. Plasma Science and Technology, 2013, 15(2): 129-132. DOI: 10.1088/1009-0630/15/2/10

Catalog

    Article views (364) PDF downloads (968) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return