Advanced Search+
WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
Citation: WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08

Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos.2011GB108011 and 2010GB103001) and the Major International (Regional) Project Cooperation and Exchanges (No.11320101005)
More Information
  • Received Date: June 26, 2013
  • H α (Balmer-alpha), H β (Balmer-beta) and H γ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the H α, H β and H γ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of H α im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of H β can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of H γ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.
  • 1 Fantz U. 2004, Contrib. Plasma Phys., 44: 508;
    2 Johnson L C, Hinnov E J. 1973, J. Quant. Spectrosc.Radiat. Transfer, 13: 333;
    3 Drawin H W, Emard F. 1976, Physica B+C, 85: 333;
    4 Zikié R, Gignos M A, Ivkovié M, et al. 2002, Spec-trochim. Acta B, 57: 987;
    5 Gignos M A, González Má, Cardenoso V. 2003, Spec-trochim. Acta B, 58: 1489;
    6 Chen C K, Wei T, Collins L R, et al. 1999, J. Phys.D: Appl. Phys., 32: 688;
    7 Satoru Tanaka, Bingjia Xiao, Kobayashi Kazuki, et al.2000, Plasma Phys. Control. Fusion, 42: 1091;
    8 Fantz U, Heger B. 1998, Plasma Phys. Control. Fusion,40: 2023;
    9 Qiu D R. 2002, Atomic Spectra Analysis. Fudan Uni-versity Press, Shanghai, p.43 (in Chinese) ;
    10 Xin R X. 2011, Plasma Emission Spectra Analysis (The second edition). Chemical Industry Press, Bei-jing, p.122 (in Chinese) ;
    11 Qiu D R. 2002, Atomic Spectra Analysis, Fudan Uni-versity Press, Shanghai, p.36 (in Chinese) ;
    12 Zhang Changxin, Dec. 2005, Journal of Anhui Normal University (Natural Science), 28: 408 (in Chinese) ;
    13 Behringe K R, Fantz U. 2000, New J. Phys., 2: 1;
    14 Lieberman M A and Lichtenberg A J. 2005, Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, Inc., Hoboken, New Jersey
  • Related Articles

    [1]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [4]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [5]Dogan MANSUROGLU, Ilker Umit UZUN-KAYMAK. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas[J]. Plasma Science and Technology, 2017, 19(1): 15401-015401. DOI: 10.1088/1009-0630/19/1/015401
    [6]ZHANG Dingzong (张定宗), WANG Yanhui (王艳辉), WANG Dezhen (王德真). The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges[J]. Plasma Science and Technology, 2016, 18(8): 826-831. DOI: 10.1088/1009-0630/18/8/06
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]WANG Lifeng (王立锋), YE Wenhua (叶文华), FAN Zhengfeng (范征锋), et al.. Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating[J]. Plasma Science and Technology, 2013, 15(10): 961-968. DOI: 10.1088/1009-0630/15/10/01
    [9]LAN Chaohui (蓝朝晖), PENG Yufei (彭宇飞), YANG Zhen (杨振), LONG Jidong (龙继东). Transient Behavior of Negative Hydrogen Ion Extraction from Plasma[J]. Plasma Science and Technology, 2013, 15(9): 945-949. DOI: 10.1088/1009-0630/15/9/21
    [10]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02

Catalog

    Article views (264) PDF downloads (1267) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return