Advanced Search+
ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
Citation: ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04

Damping of Geodesic Acoustic Mode by Trapped Electrons

More Information
  • Received Date: April 18, 2013
  • We study the Landau resonance between geodesic acoustic mode (GAM) and trapped electrons as a GAM’s collisionless damping. The assumption of ¯ ω de « ωbe is adopted. The damping rate induced by trapped electrons is found to be an increasing function of q. In low q range, circulating-ion-induced damping rate is larger than that induced by trapped electrons. As q increases, the latter becomes larger than the former. The reason is that trapped electrons’ resonant velocity is close to v te from the lower side, whiles circulating ions’ resonant velocity gets bigger further from v ti . So the number of resonant trapped electrons increases, whiles the number of resonant circulating ions decreases. The amplitude of damping rate induced by trapped electrons in the edge plasma can be comparable to that induced by circulating ions in the low q range. Another phenomenon we found is that in the chosen range of ε, the damping caused by trapped electrons has a maximum value at point εq for different q. The reason is that as ε is close to εq, trapped electorns’ resonant velocity is close to v te .
  • 1.Winsor N, Johnson J L, Dawson J M. 1968, Phys. Fluids., 11: 2448
    2 Melnikov A V, Vershkov V A, Eliseev L G, et al. 2006,Plasma Phys. Contr. F., 48: S87
    3 Ido T,Miura Y, Kamiya K, et al. 2006, Plasma Phys. Contr. F., 48: S41
    4.Fujisawa A. 2009. Nucl. Fusion, 49: 013001.
    5.Diamond P H, Itoh S I, Itoh K, et al. 2005, Plasma.Phys. Contr. F., 47: R35.
    6.Xu M, Tynan G R, et al. 2012, Phys. Rev. Lett., 108:245001.
    7.Miki K, Kishimoto Y, Miyato N, et al. 2008, J. Phys.:Conf. Ser., 123: 012028.
    8.Gao Z, Itoh K, Sanuki H, et al. 2006, Phys. Plasmas.,13: 100702.
    9.Zhang H S, Lin Z. 2010, Phys. Plasmas., 17: 072502.
    10.Hazeltine R D, Meiss J D. 2003, Plasma Con.nement.Addison-Wesley Press.
    11.Gao Z, Itoh K, Sanuki H, et al. 2008, Phys. Plasmas.,15: 072511.
    12.Qiu Z, Zonca F, Chen L. 2010, Plasma Phys. Contr.F., 52: 095003.
    13.Sugama H, Watanabe T H. 2006, J. Plasma Phys., 72:825.
    14.Wang L, Dong J Q, Shen Y, et al. 2011, Plasma Phys.Contr. F., 53: 095014.
    15.Chavdarovski I, Zonca F. 2009, Plasma Phys. Contr.F., 51: 115001.
    16.Tsai S, Chen L. 1993, Phys. Fluids B: Plasma Phys.,5: 3284.
    17.Zonca F, Chen L. 2000, Phys. Plasmas., 7: 4600.
    18.Rutherford P H, Frieman E A. 1968, Phys. Fluids., 11:569.
    19.Gao Z. 2011, Plasma Sci. Technol., 13: 15.
  • Related Articles

    [1]Jingchun LI (李景春), Jiaqi DONG (董家齐), Songfen LIU (刘松芬). Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles[J]. Plasma Science and Technology, 2020, 22(5): 55101-055101. DOI: 10.1088/2058-6272/ab62e4
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Zhiyong QIU, Liu CHEN, Fulvio ZONCA. Kinetic theory of geodesic acoustic modes in toroidal plasmas: a brief review[J]. Plasma Science and Technology, 2018, 20(9): 94004-094004. DOI: 10.1088/2058-6272/aab4f0
    [4]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [5]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [6]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [7]ZHENG Ting (郑婷), WU Bin (吴斌), XU Liqing (徐立清), HU Chundong (胡纯栋), ZANG Qing (臧庆), DING Siye (丁斯晔), LI Yingying (李颖颖), WU Xingquan (伍兴权), WANG Jinfang (王进芳), SHEN Biao (沈飙), ZHONG Guoqiang (钟国强), LI Hao (李昊), SHI Tonghui (石同辉), EAST Team. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST[J]. Plasma Science and Technology, 2016, 18(6): 595-600. DOI: 10.1088/1009-0630/18/6/03
    [8]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [9]QIU Zhiyong, Fulvio ZONCA, CHEN Liu. Kinetic Theories of Geodesic Acoustic Modes: Radial Structure, Linear Excitation by Energetic Particles and Nonlinear Saturation[J]. Plasma Science and Technology, 2011, 13(3): 257-266.
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.

Catalog

    Article views (176) PDF downloads (993) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return