Advanced Search+
DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04
Citation: DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04

Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas

Funds: supported by National Natural Science Foundation of China (Nos.10725523, 10990212, 11021565, 11075181 and 11105177), in part by National Magnetic Confinement Fusion Science Program of China (Nos.2010GB104001, 2011GB101001, 2011GB101004, 2011GB107001, 2012GB101000, 2013GB107003 and 2013GB112002)
More Information
  • Received Date: April 02, 2013
  • Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length, which is qualitatively in agreement with Wang’s theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST.
  • 1 Luce T C, Petty C C and De Haas J C M. 1992, Phys. Rev. Lett., 68: 52
    2 Petty C C and Luce T C. 1994, Nucl. Fusion, 34:121
    3 Mantica P, Gorini G, Hogeweij G M D, et al. 2000,Phys. Rev. Lett., 85: 4534
    4 Mantica P, Ryter F, Capuano C, et al. 2006, Plasma Phys. Control. Fusion, 48: 385
    5 Song S D, Zou X L, Giruzzi G, et al. 2012, Nucl. Fusion, 52: 033006
    6 Budny R V. 2008, Nucl. Fusion, 48: 075005
    7 Kinsey J E, Staebler G M and Waltz R E. 2005, Phys.Plasmas, 12: 052503
    8 Wang L and Diamond P H. 2011, Nucl. Fusion, 51:083006
    9 Lao L L, John H St, Stambaugh R D, et al. 1985, Nucl.Fusion, 25: 1611
    10 Brambilla M. 1999, Plasma Phys. Control. Fusion, 41:1
    11 Zhang X J, Zhao Y P, Wan B N, et al. 2012, Nucl.Fusion, 52: 082003
    12 Zhang W Y, Li Y D, Zhang X J, et al. 2012, Plasma Phys. Control. Fusion, 54: 035005
    13 Ding S, Wan B, Zhang X, et al. 2011, Plasma Phys.Control. Fusion, 53: 015007
    14 Mantica P, Thyagaraja A,Weiland J, et al. 2005, Phys.Rev. Lett., 95: 185002
  • Related Articles

    [1]H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1
    [2]Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
    [3]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [4]LI Xuechen (李雪辰), ZHAO Huanhuan (赵欢欢), JIA Pengying (贾鹏英). Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(11): 1149-1153. DOI: 10.1088/1009-0630/15/11/13
    [5]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [6]LIU Zhongwei (刘忠伟), YANG Lizhen (杨丽珍), WANG Zhengduo (王正铎), et al.. Atmospheric Pressure Radio Frequency Dielectric Barrier Discharges in Nitrogen/Argon[J]. Plasma Science and Technology, 2013, 15(9): 871-874. DOI: 10.1088/1009-0630/15/9/07
    [7]TAO Xiaoping (陶小平), LI Meng (李蒙), LI Hui (李辉), DONG Hai (董海). Experimental Study of ZnO-Coated Alumina DBD in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(8): 787-790. DOI: 10.1088/1009-0630/15/8/13
    [8]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08

Catalog

    Article views (215) PDF downloads (1342) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return