Advanced Search+
WANG Xin (王鑫), ZHANG Lei (张雷), FAN Juanjuan (樊娟娟), LI Yufang (李郁芳), GONG Yao (弓瑶), DONG Lei (董磊), MA Weiguang (马维光), YIN Wangbao (尹王保), JIA Suotang (贾锁堂). Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander[J]. Plasma Science and Technology, 2015, 17(11): 914-918. DOI: 10.1088/1009-0630/17/11/04
Citation: WANG Xin (王鑫), ZHANG Lei (张雷), FAN Juanjuan (樊娟娟), LI Yufang (李郁芳), GONG Yao (弓瑶), DONG Lei (董磊), MA Weiguang (马维光), YIN Wangbao (尹王保), JIA Suotang (贾锁堂). Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander[J]. Plasma Science and Technology, 2015, 17(11): 914-918. DOI: 10.1088/1009-0630/17/11/04

Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander

Funds: supported by the 973 Program of China (No. 2012CB921603), National Natural Science Foundation of China (Nos. 61475093,61127017, 61178009, 61108030, 61378047, 61275213, 61475093, and 61205216), the National Key Technology R&D Program of China (No. 2013BAC14B01), the Shanxi Natural Science Foundation (Nos. 2013021004-1 and 2012021022-1), the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China
More Information
  • Received Date: April 25, 2015
  • Improvement of measurement precision and repeatability is one of the issues cur?rently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great poten?tial to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.
  • 1 Cremers A, Radziemski L J. 2006, Handbook of LaserInduced Breakdown Spectroscopy. John Wiley & Sons Ltd., England, p.437 2 Miziolek A W, Palleschi V, Schechter I. 2006, Laser Induced Breakdown Spectroscopy (LIBS): Fundamen- tals and Applications. Cambridge University Press,New York, p.163 3 Lee W B, Wu J Y, Lee Y I, et al. 2004, Applied Spectroscopy Reviews, 39: 27 4 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Frontiers of Physics, 9: 419 5 Aguilera J A, Aragon C, Bengoechea J, et al. 2003,Applied Optics, 42: 5938 6 Aguilera J A, Aragon C. 2004, Spectrochimica Acta Part B, 59: 1861 7 Wang Z, Li L Z, West L, et al. 2012, Spectrochimica Acta Part B, 68: 58 8 Hou Z Y, Wang Z, Liu J M, et al. 2013, Optics Express,21: 15974 9 Shen X K, Lu Y F, Gebre T, et al. 2006, Journal of Applied Physics, 100: 053303 10 Liu Y, Baudelet M, Richardson M. 2010, Journal of Analytical Atomic Spectrometry, 25: 1316 11 Zhou W D, Li K X, Shen Q M, et al. 2010, Optics Express, 18: 2573 12 Li L Z, Wang Z, Yuan T B, et al. 2011, Journal of Analytical Atomic Spectrometry, 26: 2274 13 Body D, Chadwick B L. 2001, Spectrochimica Acta Part B, 56: 725 14 Dong M R, Lu J D, Yao S C, et al. 2011, Journal of Analytical Atomic Spectrometry, 26: 2183 15 Tanaka K, Yoshida K, Taguchi M. 1988, Applied Optics, 27: 1310 16 Sirven J B, Mauchien P, Salle B. 2008, Spectrochimica Acta Part B, 63: 1077 17 Robert P, Fabre C, Dubessy J, et al. 2008, Spectrochimica Acta Part B, 63: 1109 18 Bai X, Ma Q, Perrier M, et al. 2013, Spectrochimica Acta Part B, 87: 27 19 Goode S R, Morgan S L, Hoskins R, et al. 2000, Journal of Analytical Atomic Spectrometry, 15: 1133 20 Peng X J. 2010, Neural Networks, 23: 365 21 Lu Y M, Roy C V. 2008, Knowledge and Information Systems, 14: 233 22 Yin W B, Zhang L, Dong L, et al. 2009, Applied Spectroscopy, 63: 865
  • Related Articles

    [1]Junru WANG (王俊儒), Yaowei YU (余耀伟), Houyin WANG (王厚银), Bin CAO (曹斌), Jiansheng HU (胡建生), Wei XU (徐伟). Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak[J]. Plasma Science and Technology, 2021, 23(5): 55101-055101. DOI: 10.1088/2058-6272/abec63
    [2]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [3]H R MIRZAEI, R AMROLLAHI. Design, simulation and construction of the Taban tokamak[J]. Plasma Science and Technology, 2018, 20(4): 45103-045103. DOI: 10.1088/2058-6272/aaa669
    [4]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [5]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Kun LU (陆坤), Zhongwei WANG (王忠伟), Jianfeng ZHANG (张剑峰), Yongfa QIN (秦永法). Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder[J]. Plasma Science and Technology, 2017, 19(4): 45601-045601. DOI: 10.1088/2058-6272/aa57ec
    [6]KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20
    [7]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
    [8]LI Zebin (李泽彬), SUN Guoya (孙国亚), Ihor HOLOD, XIAO Yong (肖湧), et al. GTC Simulation of Ideal Ballooning Mode in Tokamak Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 499-505. DOI: 10.1088/1009-0630/15/6/03
    [9]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [10]M. B. CHOWDHURI, R. MANCHANDA, J. GHOSH, S. B. BHATT, Ajai KUMAR, B. K. DAS, K. A. JADEJA, P. A. RAIJADA, Manoj KUMAR, S. BANERJEE, Nilam RAMAIYA, Aniruddh MALI, Ketan M. PATEL, Vinay KUMAR, et al. Improvement of Plasma Performance with Lithium Wall Conditioning in Aditya Tokamak[J]. Plasma Science and Technology, 2013, 15(2): 123-128. DOI: 10.1088/1009-0630/15/2/09

Catalog

    Article views (305) PDF downloads (1014) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return