Advanced Search+
WANG Xin (王鑫), ZHANG Lei (张雷), FAN Juanjuan (樊娟娟), LI Yufang (李郁芳), GONG Yao (弓瑶), DONG Lei (董磊), MA Weiguang (马维光), YIN Wangbao (尹王保), JIA Suotang (贾锁堂). Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander[J]. Plasma Science and Technology, 2015, 17(11): 914-918. DOI: 10.1088/1009-0630/17/11/04
Citation: WANG Xin (王鑫), ZHANG Lei (张雷), FAN Juanjuan (樊娟娟), LI Yufang (李郁芳), GONG Yao (弓瑶), DONG Lei (董磊), MA Weiguang (马维光), YIN Wangbao (尹王保), JIA Suotang (贾锁堂). Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander[J]. Plasma Science and Technology, 2015, 17(11): 914-918. DOI: 10.1088/1009-0630/17/11/04

Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander

Funds: supported by the 973 Program of China (No. 2012CB921603), National Natural Science Foundation of China (Nos. 61475093,61127017, 61178009, 61108030, 61378047, 61275213, 61475093, and 61205216), the National Key Technology R&D Program of China (No. 2013BAC14B01), the Shanxi Natural Science Foundation (Nos. 2013021004-1 and 2012021022-1), the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China
More Information
  • Received Date: April 25, 2015
  • Improvement of measurement precision and repeatability is one of the issues cur?rently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great poten?tial to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.
  • 1 Cremers A, Radziemski L J. 2006, Handbook of LaserInduced Breakdown Spectroscopy. John Wiley & Sons Ltd., England, p.437 2 Miziolek A W, Palleschi V, Schechter I. 2006, Laser Induced Breakdown Spectroscopy (LIBS): Fundamen- tals and Applications. Cambridge University Press,New York, p.163 3 Lee W B, Wu J Y, Lee Y I, et al. 2004, Applied Spectroscopy Reviews, 39: 27 4 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Frontiers of Physics, 9: 419 5 Aguilera J A, Aragon C, Bengoechea J, et al. 2003,Applied Optics, 42: 5938 6 Aguilera J A, Aragon C. 2004, Spectrochimica Acta Part B, 59: 1861 7 Wang Z, Li L Z, West L, et al. 2012, Spectrochimica Acta Part B, 68: 58 8 Hou Z Y, Wang Z, Liu J M, et al. 2013, Optics Express,21: 15974 9 Shen X K, Lu Y F, Gebre T, et al. 2006, Journal of Applied Physics, 100: 053303 10 Liu Y, Baudelet M, Richardson M. 2010, Journal of Analytical Atomic Spectrometry, 25: 1316 11 Zhou W D, Li K X, Shen Q M, et al. 2010, Optics Express, 18: 2573 12 Li L Z, Wang Z, Yuan T B, et al. 2011, Journal of Analytical Atomic Spectrometry, 26: 2274 13 Body D, Chadwick B L. 2001, Spectrochimica Acta Part B, 56: 725 14 Dong M R, Lu J D, Yao S C, et al. 2011, Journal of Analytical Atomic Spectrometry, 26: 2183 15 Tanaka K, Yoshida K, Taguchi M. 1988, Applied Optics, 27: 1310 16 Sirven J B, Mauchien P, Salle B. 2008, Spectrochimica Acta Part B, 63: 1077 17 Robert P, Fabre C, Dubessy J, et al. 2008, Spectrochimica Acta Part B, 63: 1109 18 Bai X, Ma Q, Perrier M, et al. 2013, Spectrochimica Acta Part B, 87: 27 19 Goode S R, Morgan S L, Hoskins R, et al. 2000, Journal of Analytical Atomic Spectrometry, 15: 1133 20 Peng X J. 2010, Neural Networks, 23: 365 21 Lu Y M, Roy C V. 2008, Knowledge and Information Systems, 14: 233 22 Yin W B, Zhang L, Dong L, et al. 2009, Applied Spectroscopy, 63: 865
  • Related Articles

    [1]Na LI, Edward HAREFA, Weidong ZHOU. Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(11): 115507. DOI: 10.1088/2058-6272/ac8039
    [2]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [3]Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
    [4]Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
    [5]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [6]SHEN Jie (沈洁), YANG Zhengcai (杨正才), LIU Xiaoliang (刘小亮), SHI Yanchao (史彦超), ZHAO Peixi (赵培茜), SUN Shaohua (孙少华), HU Bitao (胡碧涛). Analysis of Enhanced Laser-Induced Breakdown Spectroscopy with Double Femtosecond Laser Pulses[J]. Plasma Science and Technology, 2015, 17(2): 147-152. DOI: 10.1088/1009-0630/17/2/09
    [7]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [8]SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟), WEN Guanhong(温冠宏). A Comparative Study of the Laser Induced Breakdown Spectroscopy in Single- and Collinear Double-Pulse Laser Geometry[J]. Plasma Science and Technology, 2014, 16(4): 374-379. DOI: 10.1088/1009-0630/16/4/13
    [9]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [10]Alexander I. Pushkarev, Yulia I. Isakova. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode[J]. Plasma Science and Technology, 2011, 13(6): 698-701.
  • Cited by

    Periodical cited type(21)

    1. Xiong, S., Yang, N., Guan, H. et al. Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel. Analytica Chimica Acta, 2025. DOI:10.1016/j.aca.2024.343496
    2. He, Y., Ke, C., Wen, Q. et al. Automatic focusing remote laser induced breakdown spectroscopy analysis of trace elements in steel using support vector machine regression. IEEE Transactions on Instrumentation and Measurement, 2025. DOI:10.1109/TIM.2025.3550229
    3. Xiong, S., Liao, T., Chi, Y. et al. A strategy to reduce spectral intensity uncertainty and predicted content uncertainty of low and medium alloy steel elements. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106919
    4. Li, S., Zheng, R., Deguchi, Y. et al. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys. Plasma Science and Technology, 2023, 25(4): 045510. DOI:10.1088/2058-6272/aca5f4
    5. Zhang, D., Zhang, Z., Zhang, M. et al. Portable nanosecond laser for handheld laser-induced breakdown spectroscopy instruments. Optical Engineering, 2023, 62(3): 36102. DOI:10.1117/1.OE.62.3.036102
    6. Guo, M., Huang, Z., Wang, J. et al. origin Identification of Three Kinds of Dry-cured Ham Based on Laser-induced Breakdown Spectroscopy Technology Combined with Machine Learning Algorithm | [基于激光诱导击穿光谱技术结合机器学习算法的3种干腌火腿产地识别]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(10): 279-285. DOI:10.16429/j.1009-7848.2022.10.030
    7. Lei, B.-Y., Xu, B.-P., Wang, Y.-S. et al. Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples | [非平坦样品激光诱导等离子体光谱特性研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2022, 42(10): 3024-3030. DOI:10.3964/j.issn.1000-0593(2022)10-3024-07
    8. Cui, M., Guo, H., Chi, Y. et al. Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106398
    9. Zhang, D., Feng, Z., Wei, K. et al. Remote Laser-induced Breakdown Spectroscopy and Its Application (Invited) | [远程激光诱导击穿光谱技术与应用(特邀)]. Guangzi Xuebao/Acta Photonica Sinica, 2021, 50(10): 1030001. DOI:10.3788/gzxb20215010.1030001
    10. Cui, M., Deguchi, Y., Li, G. et al. Determination of manganese in submerged steel using Fraunhofer-type line generated by long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106210
    11. Chang, F., Yang, J., Lu, H. et al. A LIBS quantitative analysis method for samples with changing temperature: Via functional data analysis. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1007-1017. DOI:10.1039/d0ja00514b
    12. Wang, Y., Bu, Y., Cai, Y. et al. Detection of electrolyte elements in human blood based on laser-induced breakdown spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 2021. DOI:10.1117/12.2602525
    13. FUGANE, Y., KASHIWAKURA, S., WAGATSUMA, K. Control of laser focal point by using an electrically tunable lens in laser-induced plasma optical emission spectrometry. ISIJ International, 2020, 60(12): 2845-2850. DOI:10.2355/isijinternational.ISIJINT-2020-170
    14. Cui, M., Deguchi, Y., Wang, Z. et al. Signal Improvement for Underwater Measurement of Metal Samples Using Collinear Long-Short Double-Pulse Laser Induced Breakdown Spectroscopy. Frontiers in Physics, 2020. DOI:10.3389/fphy.2020.00237
    15. Rong, K., Wang, Z., Hu, R. et al. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074010. DOI:10.1088/2058-6272/ab7fbc
    16. Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48
    17. Cui, M., Deguchi, Y., Wang, Z. et al. Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105873
    18. Cui, M., Deguchi, Y., Yao, C. et al. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105839
    19. Wang, Z., Deguchi, Y., Shiou, F. et al. Feasibility investigation for online elemental monitoring of iron and steel manufacturing processes using laser-induced breakdown spectroscopy. ISIJ International, 2020, 60(5): 971-978. DOI:10.2355/isijinternational.ISIJINT-2019-317
    20. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873
    21. Wang, Y., Bu, Y., Wu, F. et al. Research on LIBS quantitative analysis of heavy metal concentration in polluted water-based on Fourier self-deconvolution method. Proceedings of SPIE - The International Society for Optical Engineering, 2019. DOI:10.1117/12.2544699

    Other cited types(0)

Catalog

    Article views (305) PDF downloads (1014) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return