Advanced Search+
ZHANG Xiangnan (张向楠), LIU Guiqiang (刘桂强), LIU Zhengqi (刘正奇), HU Ying (胡莹), CAI Zhengjie (蔡正杰). Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array[J]. Plasma Science and Technology, 2015, 17(12): 1027-1031. DOI: 10.1088/1009-0630/17/12/08
Citation: ZHANG Xiangnan (张向楠), LIU Guiqiang (刘桂强), LIU Zhengqi (刘正奇), HU Ying (胡莹), CAI Zhengjie (蔡正杰). Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array[J]. Plasma Science and Technology, 2015, 17(12): 1027-1031. DOI: 10.1088/1009-0630/17/12/08

Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array

Funds: supported by National Natural Science Foundation of China (Nos. 11464019, 11264017, 11004088), Young Scientist Development Program of China (No. 20142BCB23008) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014BAB212001, 20112BBE5033)
More Information
  • Received Date: December 29, 2014
  • We propose and numerically investigate the optical transmission behaviors of a sub-wavelength metal film perforated with a two-dimensional square array of compound circular holes. Enhanced optical transmission is obtained by using the finite-difference time-domain (FDTD) method, which can be mainly attributed to the excitation and coupling of localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), and Fano Resonances. The red-shift of the transmission peak can be achieved by enlarging the size and number of small holes, the environmental dielectric constant. These indicate that the proposed structure has potential applications in integrated optoelectronic devices such as plasmonic filters and sensors.
  • 1 Ebbesen T W, Lezec H J, Ghaemi H F, et al. 1998,Nature, 391: 667 2 Ghaemi H F, Thio T, Grupp D E A, et al. 1998, Phys.Rev. B, 58: 6779 3 Darmanyan S A, Zayats A V. 2003, Phys. Rev. B, 67:035424 4 Hamidi S M, Oskuei M A. 2014, Chin. Opt. Lett., 12:031601 5 Degiron A, Ebbesen T W. 2005, J. Opt. A: Pure. Appl.Opt., 7: S90 6 Lin L, Roberts A. 2011, Opt. Express, 19: 2626 7 Prodan E, Radloff C, Halas N J, et al. 2003, Science,302: 419 8 He R, Zhou X, Fu Y, et al. 2011, Plasmonics, 6: 171 9 Chen Z, Chen J, Li Y, et al. 2013, Chin. Opt. Lett.,11: 112401 10 Grupp D E, Lezec H J, Pellerin K M, et al. 2002, Appl.Phys. Lett., 77: 1569 11 Zhu Y, Chen M, Wang H, et al. 2014, Plasma. Sci.Technol., 16: 867 12 Ni B, Huang L, Ding J, et al. 2013, Opt. Commun.,298: 237 13 Li J, Guo H, Li Z. 2013, Photon. Res., 1: 28 14 Ding W, Zhen L, Zhang J, et al. 2007, Plasma. Sci.Technol., 9: 599 15 Wang K, Ding L, Liu J, et al. 2011, Opt. Express, 19:11375 16 Liu J Q, He M D, Zhai X, et al. 2009, Opt. Express,17: 1859 17 Lassiter J B, Sobhani H, Knight M W, et al. 2012,Nano. Lett., 12: 1058 18 Zhu J, Li J, Zhao J. 2011, Plasmonics, 6: 527 19 Watts C M, Liu X, Padilla W J. 2012, Adv. Mater.,24: OP98 20 Liu G Q, Hu Y, Liu Z Q. 2014, Phys. Chem. Chem.Phys., 16: 4320 21 Zhu J, Wang Y. 2003, Plasma. Sci. Technol., 5: 1835 22 Wang Y, Qin Y, Zhang Z. 2014, Plasmonics, 9: 203 23 Wang M, Cao M, Chen X, et al. 2011, J. Phys. Chem.C, 115: 20920 24 Qian J, Liu C, Wang W, et al. 2013, Plasmonics, 8:955 25 Liu S D, Yang Z, Liu R P, et al. 2011, J. Phys. Chem.C, 115: 24469
  • Related Articles

    [1]Qingrui ZHOU, Yanjie ZHANG, Chaofeng SANG, Jiaxian LI, Guoyao ZHENG, Yilin WANG, Yihan WU, Dezhen WANG. Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104003. DOI: 10.1088/2058-6272/ad6817
    [2]Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104002. DOI: 10.1088/2058-6272/ad547e
    [3]Dongkuan LIU, Weixing DING, Wenzhe MAO, Qiaofeng ZHANG, Longlong SANG, Quanming LU, Jinlin XIE. Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)[J]. Plasma Science and Technology, 2022, 24(6): 064005. DOI: 10.1088/2058-6272/ac5789
    [4]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [5]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [6]Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b
    [7]LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10
    [8]LIU Yong (刘永), Stefan SCHMUCK, ZHAO Hailin (赵海林), John FESSEY, Paul TRIMBLE, LIU Xiang (刘祥), ZHU Zeying (朱则英), ZANG Qing (臧庆), HU Liqun (胡立群). A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST[J]. Plasma Science and Technology, 2016, 18(12): 1148-1154. DOI: 10.1088/1009-0630/18/12/02
    [9]SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
    [10]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
  • Cited by

    Periodical cited type(3)

    1. He, Q.-Y., Wang, Z.-T., Deng, Z.-G. et al. Generation and regulation of electromagnetic pulses induced by multi-petawatt laser coupling with gas jets. Nuclear Science and Techniques, 2025, 36(6): 100. DOI:10.1007/s41365-025-01692-6
    2. He, Q.Y., Yan, W., Liu, Z.P. et al. Measurement of electromagnetic pulse in laser acceleration enhanced by near-critical density targets. Physics of Plasmas, 2024, 31(10): 103303. DOI:10.1063/5.0231143
    3. Xie, J., Wang, Z., Li, M. et al. Laser-driven electron emission and expansion for the generation and guidance of giant EMPs. Optics Letters, 2024, 49(15): 4114-4117. DOI:10.1364/OL.532085
    1. He, Q.-Y., Wang, Z.-T., Deng, Z.-G. et al. Generation and regulation of electromagnetic pulses induced by multi-petawatt laser coupling with gas jets. Nuclear Science and Techniques, 2025, 36(6): 100. DOI:10.1007/s41365-025-01692-6
    2. He, Q.Y., Yan, W., Liu, Z.P. et al. Measurement of electromagnetic pulse in laser acceleration enhanced by near-critical density targets. Physics of Plasmas, 2024, 31(10): 103303. DOI:10.1063/5.0231143
    3. Xie, J., Wang, Z., Li, M. et al. Laser-driven electron emission and expansion for the generation and guidance of giant EMPs. Optics Letters, 2024, 49(15): 4114-4117. DOI:10.1364/OL.532085

    Other cited types(0)

Catalog

    Article views (434) PDF downloads (1087) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return