Advanced Search+
Dongkuan LIU, Weixing DING, Wenzhe MAO, Qiaofeng ZHANG, Longlong SANG, Quanming LU, Jinlin XIE. Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)[J]. Plasma Science and Technology, 2022, 24(6): 064005. DOI: 10.1088/2058-6272/ac5789
Citation: Dongkuan LIU, Weixing DING, Wenzhe MAO, Qiaofeng ZHANG, Longlong SANG, Quanming LU, Jinlin XIE. Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)[J]. Plasma Science and Technology, 2022, 24(6): 064005. DOI: 10.1088/2058-6272/ac5789

Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)

More Information
  • Corresponding author:

    Weixing DING, E-mail: wxding@ustc.edu.cn

  • Received Date: November 21, 2021
  • Revised Date: January 20, 2022
  • Accepted Date: February 21, 2022
  • Available Online: December 12, 2023
  • Published Date: May 25, 2022
  • Motivated by the need of the electron density measurement for the Keda Reconnection eXperiment (KRX) facility which is under development, an interferometer system has been designed and tested in bench. The 320 GHz solid-state microwave source with 1 mm wavelength is used to fulfill the high phase difference measurement in such low temperature plasma device. The results of the bench test show that the phase difference is accurately measured. In contrast to tens of degrees of phase shift expected to be measured on the KRX, the system noise (~1°) is low enough for the KRX diagnostics. In order to optimize the system for better performance, we utilize the Terasense sub-THz imaging system to adjust alignment. The interferometer system has also been calibrated via changing of the optical path length controlled by the piezo inertial motor. Simultaneously, high density polyethylene thin film is introduced successfully to change a tiny phase difference and test the sensitivity of the interferometer system.

  • This work is supported by National Natural Science Foundation of China (No. 11975231).

  • [1]
    Giovanelli R G 1946 Nature 158 81 doi: 10.1038/158081a0
    [2]
    Forbes T G and Priest E R 1982 Planet. Space Sci. 30 1183 doi: 10.1016/0032-0633(82)90127-1
    [3]
    Schindler K 1991 Geophys. Astrophys. Fluid Dyn. 62 37 doi: 10.1080/03091929108229124
    [4]
    Ji H T et al 1998 Phys. Rev. Lett. 80 3256 doi: 10.1103/PhysRevLett.80.3256
    [5]
    Yamada M 1999 J. Geophys. Res. 104 14529 doi: 10.1029/1998JA900169
    [6]
    Ding W X et al 2004 Phys. Rev. Lett. 93 045002 doi: 10.1103/PhysRevLett.93.045002
    [7]
    Angelopoulos V et al 2008 Science 321 931 doi: 10.1126/science.1160495
    [8]
    Birn J and Hesse M 2009 Ann. Geophys. 27 1067 doi: 10.5194/angeo-27-1067-2009
    [9]
    Pu Z Y et al 2010 J. Geophys. Res. 115 A02212 doi: 10.1029/2009JA014217
    [10]
    Ding W X et al 2006 Phys. Plasmas 13 112306 doi: 10.1063/1.2363353
    [11]
    Hu G H et al 2016 Plasma Sci. Technol. 18 918 doi: 10.1088/1009-0630/18/9/08
    [12]
    Ren Y et al 2005 Phys. Rev. Lett. 95 055003 doi: 10.1103/PhysRevLett.95.055003
    [13]
    Gekelman W et al 2020 J. Plasma Phys. 86 925860301 doi: 10.1017/S002237782000063X
    [14]
    Schroeder J W R et al 2021 Nat. Commun. 12 3103 doi: 10.1038/s41467-021-23377-5
    [15]
    Olson J et al 2016 Phys. Rev. Lett. 116 255001 doi: 10.1103/PhysRevLett.116.255001
    [16]
    Ding W X et al 2010 Rev. Sci. Instrum. 81 10D508 doi: 10.1063/1.3466898
    [17]
    Ding W X et al 2003 Phys. Rev. Lett. 90 035002 doi: 10.1103/PhysRevLett.90.035002
    [18]
    Chen J et al 2018 Rev. Sci. Instrum. 89 10B101 doi: 10.1063/1.5035276
    [19]
    Ding W X et al 2018 Rev. Sci. Instrum. 89 10B103 doi: 10.1063/1.5035280
    [20]
    Brower D L et al 2001 Rev. Sci. Instrum. 72 1077 doi: 10.1063/1.1321744
    [21]
    Liu D K et al 2021 Rev. Sci. Instrum. 92 053516 doi: 10.1063/5.0043882
    [22]
    Xie J L et al 2014 Rev. Sci. Instrum. 85 11D828 doi: 10.1063/1.4890249
    [23]
    Mao W Z et al 2021 Rev. Sci. Instrum. 92 053514 doi: 10.1063/5.0043864
    [24]
    Liu H Q et al 2014 Rev. Sci. Instrum. 85 11D405 doi: 10.1063/1.4889777
    [25]
    Dodel G and Kunz W 1978 Infrared Phys. 18 773 doi: 10.1016/0020-0891(78)90102-1
    [26]
    Ding W X et al 2014 Rev. Sci. Instrum. 85 11D406 doi: 10.1063/1.4889909
  • Related Articles

    [1]Jianchao LI, Xiaoqing ZHANG, Yu ZHANG, Abba Alhaji BALA, Huiping LIU, Guohong ZHOU, Nengchao WANG, Da LI, Zhongyong CHEN, Zhoujun YANG, Zhipeng CHEN, Jiaolong DONG, Yonghua DING, the J-TEXT Team. Investigation of the J-TEXT plasma events by k-means clustering algorithm[J]. Plasma Science and Technology, 2023, 25(8): 085103. DOI: 10.1088/2058-6272/acc3d1
    [2]Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3
    [3]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [4]Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
    [5]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [6]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [7]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Bowen ZHENG (郑博文), Shiping LI (李世平), Yipo ZHANG (张轶泼), Zejie YIN (阴泽杰). A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-fiight neutron spectrometer[J]. Plasma Science and Technology, 2018, 20(4): 45601-045601. DOI: 10.1088/2058-6272/aaaaa9
    [8]Dingliang TANG (汤丁亮), Xianhui ZHANG (张先徽), Si-ze YANG (杨思泽). Plasma electrolytic liquefaction of cellulosic biomass[J]. Plasma Science and Technology, 2018, 20(4): 44002-044002. DOI: 10.1088/2058-6272/aa9563
    [9]JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
    [10]YANG Guang (杨光), QIAO Shujun (乔淑君), CHEN Pengfei (陈鹏飞), DING Yu (丁宇), TIAN Di (田地). Rock and Soil Classification Using PLS-DA and SVM Combined with a Laser-Induced Breakdown Spectroscopy Library[J]. Plasma Science and Technology, 2015, 17(8): 656-663. DOI: 10.1088/1009-0630/17/8/08
  • Cited by

    Periodical cited type(25)

    1. Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606
    2. Sun, Y., Liu, L., Xiao, L. Application of Wavelet Threshold Denoising in LIBS Spectral Denoising. 2024. DOI:10.1109/EIT63098.2024.10762555
    3. Wu, L., Kim, S.K. Evaluating the economic and climate adaptation benefits of land conservation strategies in urban coastal regions of the U.S. and China. Climate Risk Management, 2024. DOI:10.1016/j.crm.2024.100632
    4. Dong, M., Cai, J., Liu, H. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106807
    5. Yang, L., Xiang, Y., Li, Y. et al. Identification and classification of recyclable waste using laser-induced breakdown spectroscopy technology. AIP Advances, 2023, 13(7): 075024. DOI:10.1063/5.0149329
    6. Xu, L., Shu, Q., Fu, H. et al. Estimation of Quercus Biomass in Shangri-La Based on GEDI Spaceborne Lidar Data. Forests, 2023, 14(5): 876. DOI:10.3390/f14050876
    7. Brunnbauer, L., Gajarska, Z., Lohninger, H. et al. A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS). TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2022.116859
    8. Guan, C., Wu, T., Chen, J. et al. Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method. Chemosensors, 2022, 10(11): 490. DOI:10.3390/chemosensors10110490
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    11. Kim, S.K., Bennett, M.M., van Gevelt, T. et al. Urban agglomeration worsens spatial disparities in climate adaptation. Scientific Reports, 2021, 11(1): 8446. DOI:10.1038/s41598-021-87739-1
    12. Song, Y., Song, W., Yu, X. et al. Improvement of sample discrimination using laser-induced breakdown spectroscopy with multiple-setting spectra. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.339053
    13. Liu, K., He, C., Zhu, C. et al. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116357
    14. Teng, G., Wang, Q., Cui, X. et al. Predictive data clustering of laser-induced breakdown spectroscopy for brain tumor analysis. Biomedical Optics Express, 2021, 12(7): 4438-4451. DOI:10.1364/BOE.431356
    15. Yang, Y., Zhang, L., Hao, X. et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy | [机器学习结合激光诱导击穿光谱技术铁矿石分类方法]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50(5): 20200490. DOI:10.3788/IRLA20200490
    16. Wang, C., Wang, J., Wang, J. et al. Classification of 13 original rock samples by laser induced breakdown spectroscopy. Laser Physics, 2021, 31(3): 035601. DOI:10.1088/1555-6611/abdfc8
    17. Jayaganthan, S., Babu, M.S., Vasa, N.J. et al. Classification of coal deposited epoxy micro-nanocomposites by adopting machine learning techniques to libs analysis. Journal of Physics Communications, 2021, 5(10): 105006. DOI:10.1088/2399-6528/ac2b5d
    18. Liu, X., Che, X., Li, K. et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes. Plasma Science and Technology, 2020, 22(7): 074006. DOI:10.1088/2058-6272/ab7eda
    19. Feng, Z., Zhang, D., Wang, B. et al. The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods. Plasma Science and Technology, 2020, 22(7): 074012. DOI:10.1088/2058-6272/ab84ed
    20. Dong, M., Wei, L., González, J.J. et al. Coal Discrimination Analysis Using Tandem Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92(10): 7003-7010. DOI:10.1021/acs.analchem.0c00188
    21. Yang, Y., Hao, X., Zhang, L. et al. Application of scikit and keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy (LIBS). Sensors (Switzerland), 2020, 20(5): 1393. DOI:10.3390/s20051393
    22. Wang, Z., Hou, Z., Zhang, L. et al. Coal analysis. Laser-Induced Breakdown Spectroscopy, Second Edition, 2020. DOI:10.1016/B978-0-12-818829-3.00021-6
    23. Xia, W., Zeng, J., Long, Z. et al. Study on fracture fault diagnosis online method of bogie of maglev train. 2019. DOI:10.1109/CAC48633.2019.8996297
    24. Wang, Z., Wang, S., Kong, D. et al. Methane detection based on improved chicken algorithm optimization support vector machine. Applied Sciences (Switzerland), 2019, 9(9): 1761. DOI:10.3390/app9091761
    25. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Figures(10)

    Article views (110) PDF downloads (59) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return