Advanced Search+
PAN Congyuan (潘从元), DU Xuewei (杜学维), ZENG Qiang (曾强), YU Yunsi (于云偲), WANG Shengbo (王声波), WANG Qiuping (王秋平). A Study of the Laser-Induced Breakdown Spectroscopy of Carbon in the Ultraviolet Wavelength Range Under Vacuum Conditions[J]. Plasma Science and Technology, 2015, 17(8): 682-686. DOI: 10.1088/1009-0630/17/8/12
Citation: PAN Congyuan (潘从元), DU Xuewei (杜学维), ZENG Qiang (曾强), YU Yunsi (于云偲), WANG Shengbo (王声波), WANG Qiuping (王秋平). A Study of the Laser-Induced Breakdown Spectroscopy of Carbon in the Ultraviolet Wavelength Range Under Vacuum Conditions[J]. Plasma Science and Technology, 2015, 17(8): 682-686. DOI: 10.1088/1009-0630/17/8/12

A Study of the Laser-Induced Breakdown Spectroscopy of Carbon in the Ultraviolet Wavelength Range Under Vacuum Conditions

Funds: upported by the National Special Fund for the Development of Major Research Equipment and Instruments of China (No. 2014YQ120351)
More Information
  • Received Date: February 06, 2015
  • The influence of a vacuum on the laser-induced breakdown spectroscopy (LIBS) of carbon in the ultraviolet wavelength range is studied. Experiments are performed with graphite using a LIBS system, which consists of a 1064 nm Nd:YAG laser, a vacuum pump, a spectrometer and a vacuum chamber. The vacuum varies from 10 Pa to 1 atm. Atomic lines as well as singly and doubly charged ions are confirmed under the vacuums. A temporal evolution analysis of intensity is performed for the atomic lines of C I 193.09 nm and C I 247.86 nm under different vacuum conditions. Both time-integrated and time-resolved intensity evolutions under vacuums are achieved. The lifetimes of the two atomic lines have similar trends, which supports the point of view of a ‘soft spot’. Variations of plasma temperature and electron density under different vacuums are measured. This study is helpful for research on carbon detection using LIBS under vacuum conditions.
  • 1 Wang Z, Yuan T B and Lui S L, et al. 2012, Frontiers of Physics, 7: 708 2 Zhang L, Hu Z and Yin W, et al. 2012, Frontiers of Physics, 7: 690 3 L′opez-Moreno C, Palanco S and Javier Laserna J,et al. 2006, Journal of Analytical Atomic Spectrometry, 21: 55 4 Dong F, Chen X and Wang Q, et al. 2012, Frontiers of Physics, 7: 679 5 Wormhoudt J, Iannarilli F J and Jones S, et al. 2005,Applied Spectroscopy, 59: 1098 6 Moscicki T, Hoffman J and Szymanski Z. 2013, Journal of Applied Physics, 114: 083306 7 Camacho J J, Diaz L and Santos M, et al. 2009, Journal of Applied Physics, 106: 033306 8 Vors E, Gallou C and Salmon L. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63: 1198 9 Khater M A, Costello J T and Kennedy E T. 2002,Applied Spectroscopy, 56: 970 10 Sun L and Yu H. 2009, Spectrochimica Acta Part B:Atomic Spectroscopy, 64: 278 11 Kramida A, Ralchenko Y and Reader J. 2014, NIST Atomic Spectra Database (ver. 5.2), http://physics.nist.gov/asd 12 Yu J, Ma Q L and Motto-Ros V, et al. 2012, Frontiers of Physics, 7: 649 13 Dreyer C B, Mungas G S and Thanh P, et al. 2007,Spectrochimica Acta Part B: Atomic Spectroscopy, 62:1448 14 Pan C, Han Z and Li C, et al. 2014, Spectroscopy and Spectral Analysis, 34: 865 (in Chinese) 15 Hahn D W and Omenetto N. 2010, Applied Spectroscopy, 64: 335 16 Arag′ on C and Aguilera J A. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63: 893 17 Bashir S, Farid N and Mahmood K, et al. 2012, Applied Physics A, 107: 203 18 Dawood M S and Margot J. 2014, AIP Advances, 4:037111 19 Cowpe J S, Pilkington R D and Astin J S, et al. 2009,Journal of Physics D: Applied Physics, 42: 165202 20 Corsi M, Cristoforetti G and Hidalgo M, et al. 2005, Applied Spectroscopy, 59: 853 21 Zhong Ziming, Lu Jidong, Zheng Jianping, et al. 2011,Acta Optica Sinica, 31: 275 (in Chinese) 22 Knight A K, Scherbarth N L and Cremers D A, et al.2000, Applied Spectroscopy, 54: 331 23 Choi S J and Yoh J J. 2011, Optics Express, 19: 23097 24 Li X, Zhou W and Cui Z. 2012, Frontiers of Physics, 7: 721
  • Related Articles

    [1]Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3
    [2]Qingdong ZENG (曾庆栋), Guanghui CHEN (陈光辉), Xiangang CHEN (陈献刚), Boyun WANG (王波云), Boyang WAN (万博阳), Mengtian YUAN (袁梦甜), Yang LIU (刘洋), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system[J]. Plasma Science and Technology, 2020, 22(7): 74013-074013. DOI: 10.1088/2058-6272/ab8a0b
    [3]Sungho SHIN, Youngmin MOON, Jaepil LEE, Eunsung KWON, Kyihwan PARK, Sungho JEONG. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis[J]. Plasma Science and Technology, 2020, 22(7): 74011-074011. DOI: 10.1088/2058-6272/ab7d48
    [4]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [5]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [6]Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
    [7]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [8]KONG Haiyang (孔海洋), SUN Lanxiang (孙兰香), HU Jingtao (胡静涛), XIN Yong (辛勇), CONG Zhibo (丛智博). Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(11): 964-970. DOI: 10.1088/1009-0630/17/11/14
    [9]LIU Jia (刘佳), JIA Yunhai (贾云海), ZHANG Yong (张勇), SUN Nian (孙念). Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 644-648. DOI: 10.1088/1009-0630/17/8/06
    [10]M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11

Catalog

    Article views (457) PDF downloads (1137) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return