Advanced Search+
BAI Yujing (白玉静), LI Jianquan (李建泉), XU Jun (徐军), LU Wenqi (陆文琪), WANG Younian (王友年), DING Wanyu (丁万昱 ). Improvement of the Harmonic Technique of Probe for Measurements of Electron Temperature and Ion Density[J]. Plasma Science and Technology, 2016, 18(1): 58-61. DOI: 10.1088/1009-0630/18/1/10
Citation: BAI Yujing (白玉静), LI Jianquan (李建泉), XU Jun (徐军), LU Wenqi (陆文琪), WANG Younian (王友年), DING Wanyu (丁万昱 ). Improvement of the Harmonic Technique of Probe for Measurements of Electron Temperature and Ion Density[J]. Plasma Science and Technology, 2016, 18(1): 58-61. DOI: 10.1088/1009-0630/18/1/10

Improvement of the Harmonic Technique of Probe for Measurements of Electron Temperature and Ion Density

More Information
  • Received Date: August 24, 2015
  • Conventional Langmuir probe techniques usually face the difficulty of being used in processing plasmas where dielectric compounds form, due to rapid failure by surface insulation. A solution to the problem, the so-called harmonic probe technique, had been proposed and shown effectiveness. In this study, the technique was investigated in detail by changing bias signal amplitudes V0, and evaluated its accuracy by comparing with the conventional Langmuir probe. It was found that the measured electron temperature Te increased with V0, but showing a relatively stable region when V0 >Te/e in which it was close to the true Te value. This is contrary to the general consideration that V0 should be smaller than Te/e for accurate measurement of Te. The phenomenon is interpreted by the non-negligible change of the ion current with V0 at low V0 values. On the other hand, the measured ni also increased with V0 due to the sheath expansion, and to improve the accuracy of ni it needs to linearly extrapolate the ni-V0 trend to V0=0. The results were applied to a diagnosis of the plasmas for chemical vapor deposition of diamond-like carbon thin films and the relationship between plasma parameters and films deposition rates was obtained.
  • 1 Zhu K, Kuryatkov V, Borisov B, et al. 2004, Journal of Applied Physics, 95: 4635 2 Mark Bradley R. 2013, Journal of Applied Physics,114: 224306 3 Langmuir, Mott Smith H. 1924, General Electric Reviews, 27: 449 4 Van Nieuwenhove R, Van Oost G. 1988, Review of Scientific Instruments, 59: 1053 5 Boedo J A, Gray D, Conn R W, et al. 1999, Review of Scientific Instruments, 70: 2997 6 Rudakov D L, Boedo J A, Moyer R A, et al. 2001, Review of Scientific Instruments, 72: 453 7 Lee M H, Jang S H, Chung C W. 2007, Journal of Applied Physics, 101: 033305 8 Pang J H, Lu W Q, Xin Y, et al. 2012, Plasma Science and Technology, 14: 172 9 Hwang K T, Oh S J, Choi I J, et al. 2010, Physics of Plasmas, 17: 063501 10 Bang J Y, Yoo K, Kim D H, et al. 2011, Plasma Sources Science and Technology, 20: 065005 11 Oh S J, Choi I J, Kim J Y, et al. 2012, Measurement Science and Technology, 23: 085001 12 Xu J, Deng X L, Zhang J L, et al. 2001, Thin Solid Films, 390: 107 13 http://www.physics.ucla.edu/plasma-exp/180E-W97/DprobeAnalysis.html 14 Patra S K, Rao G Mohan. 2004, Vacuum, 74: 93 15 Liu F X, Yao K L, Liu Z L. 2007, Applied Surface Science, 253: 6957
  • Related Articles

    [1]Junggil KIM, Yunjung KIM, Sangjin KIM, Guangsup CHO. Silicone-coated polyimide films deposited by surface dielectric barrier discharges[J]. Plasma Science and Technology, 2019, 21(1): 15506-015506. DOI: 10.1088/2058-6272/aae477
    [2]Hua LI (李花), Zhengduo WANG (王正铎), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). Insight into the remaining high surface energy of atmospheric DBD plasma-treated polyethylene web after three months’ aging[J]. Plasma Science and Technology, 2019, 21(1): 15504-015504. DOI: 10.1088/2058-6272/aae2ad
    [3]Mooktzeng LIM (林木森), Ahmad Zulazlan Shah ZULKIFLI. Investigation of biomass surface modification using non-thermal plasma treatment[J]. Plasma Science and Technology, 2018, 20(11): 115502. DOI: 10.1088/2058-6272/aac819
    [4]Amel E. A. ELABID, GUO Ying (郭颖), SHI Jianjun (石建军), DING Ke (丁可), ZHANG Jing (张菁). Synergistic Effect of Atmospheric Pressure Plasma Pre-Treatment on Alkaline Etching of Polyethylene Terephthalate Fabrics and Films[J]. Plasma Science and Technology, 2016, 18(4): 346-352. DOI: 10.1088/1009-0630/18/4/03
    [5]LIU Wenzheng (刘文正), LEI Xiao (雷晓), ZHAO Qiang (赵强). Study on Glow Discharge Plasma Used in Polyester Surface Modification[J]. Plasma Science and Technology, 2016, 18(1): 35-40. DOI: 10.1088/1009-0630/18/1/07
    [6]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [7]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [8]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [9]LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09
    [10]Xu Jinzhou(徐金洲), Zhong Ping(钟平), Li Jialing(李嘉灵), Ling Jie (林捷), Diao Ying(刁颖), Zhang Jing(张菁). Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord[J]. Plasma Science and Technology, 2010, 12(5): 601-607.

Catalog

    Article views (368) PDF downloads (837) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return