Advanced Search+
CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11
Citation: CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11

Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

Funds: supported by National Natural Science Foundation of China (Nos. 11274092, 11404092, 61401146), the Nantong Science and Technology Project, Nantong, China (No. BK2014024), the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering,Nanjing, China (No. KF2014001), and the Fundamental Research Funds for the Central Universities of China (No. 2014B11414)
More Information
  • Received Date: September 07, 2015
  • Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given.
  • 1 Michael G Kong, Liu Dingxin. 2014, High Voltage Engineering, 40: 2956 (in Chinese) 2 Samukawa S, Hori M, Rauf S, et al. 2014, J. Phys. D:Appl. Phys., 45: 253001 3 Peter Bruggeman, Christophe Leys. 2009, J. Phys. D:Appl. Phys., 42: 053001 4 Lu Xinpei, Yan Ping, Ren Chunsheng, et al. 2011, Sci.Sin-Phys. Mech. Astron., 41: 801 (in Chinese) 5 Tijani Jimoh O, Fatoba Ojo O, Madzivire Godfrey, et al.2014, Water Air Soil Pollut., 225: 2102 6 Mart′?nková L, Uhn′aková B, P′atek M, et al. 2009, Environ. Int., 35: 162 7 Pˇarariua C, Mihoc G, Popa A, et al. 2013, Chem. Eng.J., 222: 218 8 Han Y X, Boateng A A, Qi P X, et al. 2013, J. Environ.Manage., 118: 196 9 Jiang Nan, Lu Na, Shang Kefeng, et al. 2013, J. Hazard.Mater., 262: 387 10 Chen Bingyan, Zhu Changping, Chen Longwei, et al.2014, Plasma Sci. Technol., 16: 1126 11 Haddouche A, Lemerini M. 2015, Plasma Sci. Technol.,17: 589 12 Malik Muhammad Arif. 2010, Plasma Chem. Plasma Process., 30: 21 13 Wu Haixia, Fang Zhi, Xu Yanhua. 2015, Plasma Sci.Technol., 17: 228 14 Horikoshi Satoshi, Serpone Nick. 2014, Molecules, 19:18102 15 Zhu Lu, He Zhenghao, Li Pei, et al. 2013, J. Electrostat.,71: 728 16 Li Shengli, Hu Sheng, Zhang Han. 2012, IEEE Trans.Plasma Sci., 40: 63 17 Lin Qifu, Ni Guohua, Jiang Yiman, et al. 2014, Plasma Sci. Technol., 16: 1036 18 Lu Na, Feng Yingchun, Li Jie, et al. 2015, IEEE Trans.Plasma Sci., 43: 580 19 Jiang Song, Wen Yiyong, Liu Kefu. 2014, Plasma Sci.Technol., 16: 59 20 Pokryvailo Alex, Wolf Michael, Yankelevich Yefim, et al.2006, IEEE Trans. Plasma Sci., 34: 1731 21 Vanraes Patrick, Willems Gert, Daels Nele, et al. 2015,Water Res., 72: 361 22 Stratton G R, Bellona C L, Dai F, et al. 2015, Chem.Eng. J., 273: 543 23 Abia Daouda, Nzali Serge, Acayanka Elie, et al. 2015,J. Ind. Eng. Chem., 29: 156 24 Gu Ling. 2014, Plasma Sci. Technol., 16: 223 25 Zhou C H, Cheng S B, Sun J L, et al. 2009, J. Phys.Chem. A, 113: 4923 26 Wang Xiaoping, Li Zhongjian, Zhang Xingwang, et al.2014, Plasma Sci. Technol., 16: 479 27 Azooz A A and Waysi Sabah I. 2014, Plasma Sci. Technol., 16: 211 28 Yu Jianyang, Liu Huaping, Xu Dimeng, et al. 2014,Plasma Sci. Technol., 16: 197 29 Wandell Robert J, Locke Bruce R. 2014, IEEE Trans.Plasma Sci., 42: 2634 30 Kim Kil-Seong, Gam Sang Gyu, Mok Young Sun. 2015,Chem. Eng. J., 271: 31 31 Andreas S, James Y J, Steven E B, et al. 1998, IEEE Trans. Plasma Sci., 26: 1685 32 Ko C H, Fan C, Chiang P N, et al. 2013, J. Hazard.Mater., 149: 275 33 Charles de Izarra. 2000, J. Phys. D: Appl. Phys., 33:1697 34 Yang Q S, Jiang Z L, Peng Z M, et al. 2011, Acta Phys.Sin., 60: 053302 (in Chinese) 35 Li X Y, Lin Z X, Liu Y Y, et al. 2004, Acta Optical Sin.,24: 1051 36 Jiang Pengchao, Wang Wenchun, Zhang Shuai, et al.2014, Spectrochim. Acta A, 122: 107 37 Liu Kefu, Zhao Haiyang, Qiu Jian. 2009, High Voltage Engineering, 35: 12 (in Chinese) 38 Chen Longwei, Yu Wei, Xiao Zuo, et al. 2012, Thin Solid Films, 521: 226 39 Penetrante B M, Hsiao M C, Bardsley J N, et al. 1997,Plasma Sources Sci. Technol., 6: 251 40 Tas Marnix A, Hardeveld R, Veldhuizen E M. 1997,Plasma Chem. Plasma Process., 17: 371 41 Shih K Y, Bruce R. 2011, IEEE Trans. Plasma Sci., 39:883 42 Oba Y, Watanabe N, Kouchi A, et al. 2011, Phys. Chem.Chem. Phys., 13: 15792 43 Casasanta G., Sarra A, Meloni D, et al. 2011, Atmos.Environ., 45: 3937 44 Pfister G, Baumgartner D, Maderbacher R, et al. 2000,Atmos. Environ., 34: 4019 45 Li Xuechen, Zhao Na, Fang Tongzhen, et al. 2008,Plasma Sources Sci. Technol., 17: 015017 46 Ha Yan, Wang Huijuan, Wang Xiaofei. 2012, Phys. Plasmas, 19: 012308 47 Dai D, Hou H X, Hao Y P. 2011, Appl. Phys. Lett., 98:131503 48 Bagheri Mehdi, Mohseni Madjid. 2014, Chem. Eng. J.,256: 51 49 Ho Leong Chuan, Babu Ponnivalavan, Kumar Rajnish,et al. 2013, Energy, 63: 252 50 Takita Kenichi, Abe Naoyuki, Masuya Goro, et al. 2007,Proc. Combust. Inst., 31: 2489 51 Chen Junhong, Wang Pengxiang. 2005, IEEE Trans.Plasma Sci., 33: 808 52 Crutzen P J. 1979, Ann. Rev. Earth Planet. Sci., 7: 443 53 Nissenson P, Dabdub D, Das R, et al. 2010, Atmos. Environ., 44: 4859 54 Dubowski Yael, Colussi A J, Hoffmann M R. 2001, J.Phys. Chem. A, 105: 4928 55 Zoschke Kristin, B¨ ornick Hilmar, Worch Eckhard. 2014,Water Res., 52: 131 56 George V B, Greenstock C L, Helman W P, et al. 1988,J. Phys. Chem. Ref. Data, 17: 513
  • Related Articles

    [1]Dianlin ZHENG (郑典麟), Kai ZHANG (张凯), Zhengying CUI (崔正英), Ping SUN (孙平), Chunfeng DONG (董春凤), Ping LU (卢平), Bingzhong FU (傅炳忠), Zetian LIU (刘泽田), Zhongbing SHI (石中兵), Qingwei YANG (杨青巍). High-speed VUV spectroscopy for edge impurity line emission measurements in HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105103. DOI: 10.1088/2058-6272/aacf3d
    [2]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [3]Haiyan MA (马海燕), Donghui XIA (夏冬辉), Zhijiang WANG (王之江), Fangtai CUI (崔芳泰), Zhenxiong YU (余振雄), Yikun JIN (金易坤), Changhai LIU (刘昌海). Design of the high voltage isolation transmission module with low delay for ECRH system on J-TEXT[J]. Plasma Science and Technology, 2018, 20(2): 24004-024004. DOI: 10.1088/2058-6272/aa99d3
    [4]Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7
    [5]LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10
    [6]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [7]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [8]HUANG Mei (黄梅), CHEN Gangyu (陈罡宇), ZHOU Jun (周俊), WANG Chao (王超), et al.. Development of a 140 GHz Steerable Launcher for the HL-2A ECRH System[J]. Plasma Science and Technology, 2013, 15(12): 1247-1253. DOI: 10.1088/1009-0630/15/12/16
    [9]WANG Chao (王超), ZHOU Jun (周俊), HUANG Mei (黄梅), WANG He (王贺), CHEN Gangyu (陈罡宇), RAO Jun (饶军). ECRH Launcher for Four-Beam Injection on HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(5): 476-479. DOI: 10.1088/1009-0630/15/5/16
    [10]Hiroe IGAMI, Hiroshi IDEI, Shin KUBO, Yasuo YOSHIMURA., Takashi SHIMOZUMA, Hiromi TAKAHASHI. Measurement of the electron Bernstein wave emission with one of the power transmission lines for ECH in LHD[J]. Plasma Science and Technology, 2011, 13(4): 405-409.

Catalog

    Article views (410) PDF downloads (879) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return