Advanced Search+
CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11
Citation: CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11

Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

Funds: supported by National Natural Science Foundation of China (Nos. 11274092, 11404092, 61401146), the Nantong Science and Technology Project, Nantong, China (No. BK2014024), the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering,Nanjing, China (No. KF2014001), and the Fundamental Research Funds for the Central Universities of China (No. 2014B11414)
More Information
  • Received Date: September 07, 2015
  • Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given.
  • 1 Michael G Kong, Liu Dingxin. 2014, High Voltage Engineering, 40: 2956 (in Chinese) 2 Samukawa S, Hori M, Rauf S, et al. 2014, J. Phys. D:Appl. Phys., 45: 253001 3 Peter Bruggeman, Christophe Leys. 2009, J. Phys. D:Appl. Phys., 42: 053001 4 Lu Xinpei, Yan Ping, Ren Chunsheng, et al. 2011, Sci.Sin-Phys. Mech. Astron., 41: 801 (in Chinese) 5 Tijani Jimoh O, Fatoba Ojo O, Madzivire Godfrey, et al.2014, Water Air Soil Pollut., 225: 2102 6 Mart′?nková L, Uhn′aková B, P′atek M, et al. 2009, Environ. Int., 35: 162 7 Pˇarariua C, Mihoc G, Popa A, et al. 2013, Chem. Eng.J., 222: 218 8 Han Y X, Boateng A A, Qi P X, et al. 2013, J. Environ.Manage., 118: 196 9 Jiang Nan, Lu Na, Shang Kefeng, et al. 2013, J. Hazard.Mater., 262: 387 10 Chen Bingyan, Zhu Changping, Chen Longwei, et al.2014, Plasma Sci. Technol., 16: 1126 11 Haddouche A, Lemerini M. 2015, Plasma Sci. Technol.,17: 589 12 Malik Muhammad Arif. 2010, Plasma Chem. Plasma Process., 30: 21 13 Wu Haixia, Fang Zhi, Xu Yanhua. 2015, Plasma Sci.Technol., 17: 228 14 Horikoshi Satoshi, Serpone Nick. 2014, Molecules, 19:18102 15 Zhu Lu, He Zhenghao, Li Pei, et al. 2013, J. Electrostat.,71: 728 16 Li Shengli, Hu Sheng, Zhang Han. 2012, IEEE Trans.Plasma Sci., 40: 63 17 Lin Qifu, Ni Guohua, Jiang Yiman, et al. 2014, Plasma Sci. Technol., 16: 1036 18 Lu Na, Feng Yingchun, Li Jie, et al. 2015, IEEE Trans.Plasma Sci., 43: 580 19 Jiang Song, Wen Yiyong, Liu Kefu. 2014, Plasma Sci.Technol., 16: 59 20 Pokryvailo Alex, Wolf Michael, Yankelevich Yefim, et al.2006, IEEE Trans. Plasma Sci., 34: 1731 21 Vanraes Patrick, Willems Gert, Daels Nele, et al. 2015,Water Res., 72: 361 22 Stratton G R, Bellona C L, Dai F, et al. 2015, Chem.Eng. J., 273: 543 23 Abia Daouda, Nzali Serge, Acayanka Elie, et al. 2015,J. Ind. Eng. Chem., 29: 156 24 Gu Ling. 2014, Plasma Sci. Technol., 16: 223 25 Zhou C H, Cheng S B, Sun J L, et al. 2009, J. Phys.Chem. A, 113: 4923 26 Wang Xiaoping, Li Zhongjian, Zhang Xingwang, et al.2014, Plasma Sci. Technol., 16: 479 27 Azooz A A and Waysi Sabah I. 2014, Plasma Sci. Technol., 16: 211 28 Yu Jianyang, Liu Huaping, Xu Dimeng, et al. 2014,Plasma Sci. Technol., 16: 197 29 Wandell Robert J, Locke Bruce R. 2014, IEEE Trans.Plasma Sci., 42: 2634 30 Kim Kil-Seong, Gam Sang Gyu, Mok Young Sun. 2015,Chem. Eng. J., 271: 31 31 Andreas S, James Y J, Steven E B, et al. 1998, IEEE Trans. Plasma Sci., 26: 1685 32 Ko C H, Fan C, Chiang P N, et al. 2013, J. Hazard.Mater., 149: 275 33 Charles de Izarra. 2000, J. Phys. D: Appl. Phys., 33:1697 34 Yang Q S, Jiang Z L, Peng Z M, et al. 2011, Acta Phys.Sin., 60: 053302 (in Chinese) 35 Li X Y, Lin Z X, Liu Y Y, et al. 2004, Acta Optical Sin.,24: 1051 36 Jiang Pengchao, Wang Wenchun, Zhang Shuai, et al.2014, Spectrochim. Acta A, 122: 107 37 Liu Kefu, Zhao Haiyang, Qiu Jian. 2009, High Voltage Engineering, 35: 12 (in Chinese) 38 Chen Longwei, Yu Wei, Xiao Zuo, et al. 2012, Thin Solid Films, 521: 226 39 Penetrante B M, Hsiao M C, Bardsley J N, et al. 1997,Plasma Sources Sci. Technol., 6: 251 40 Tas Marnix A, Hardeveld R, Veldhuizen E M. 1997,Plasma Chem. Plasma Process., 17: 371 41 Shih K Y, Bruce R. 2011, IEEE Trans. Plasma Sci., 39:883 42 Oba Y, Watanabe N, Kouchi A, et al. 2011, Phys. Chem.Chem. Phys., 13: 15792 43 Casasanta G., Sarra A, Meloni D, et al. 2011, Atmos.Environ., 45: 3937 44 Pfister G, Baumgartner D, Maderbacher R, et al. 2000,Atmos. Environ., 34: 4019 45 Li Xuechen, Zhao Na, Fang Tongzhen, et al. 2008,Plasma Sources Sci. Technol., 17: 015017 46 Ha Yan, Wang Huijuan, Wang Xiaofei. 2012, Phys. Plasmas, 19: 012308 47 Dai D, Hou H X, Hao Y P. 2011, Appl. Phys. Lett., 98:131503 48 Bagheri Mehdi, Mohseni Madjid. 2014, Chem. Eng. J.,256: 51 49 Ho Leong Chuan, Babu Ponnivalavan, Kumar Rajnish,et al. 2013, Energy, 63: 252 50 Takita Kenichi, Abe Naoyuki, Masuya Goro, et al. 2007,Proc. Combust. Inst., 31: 2489 51 Chen Junhong, Wang Pengxiang. 2005, IEEE Trans.Plasma Sci., 33: 808 52 Crutzen P J. 1979, Ann. Rev. Earth Planet. Sci., 7: 443 53 Nissenson P, Dabdub D, Das R, et al. 2010, Atmos. Environ., 44: 4859 54 Dubowski Yael, Colussi A J, Hoffmann M R. 2001, J.Phys. Chem. A, 105: 4928 55 Zoschke Kristin, B¨ ornick Hilmar, Worch Eckhard. 2014,Water Res., 52: 131 56 George V B, Greenstock C L, Helman W P, et al. 1988,J. Phys. Chem. Ref. Data, 17: 513
  • Related Articles

    [1]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [2]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [3]Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001
    [4]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09
    [7]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [8]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [9]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [10]LIU Xiaohu (刘小虎), HONG Feng (洪枫), GUO Ying (郭颖), ZHANG Jing (张菁), SHI Jianjun (石建军). Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet[J]. Plasma Science and Technology, 2013, 15(5): 439-442. DOI: 10.1088/1009-0630/15/5/09

Catalog

    Article views (410) PDF downloads (879) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return