Advanced Search+
ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06
Citation: ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06

Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge

Funds: supported by the Natural Science Foundation of Hebei Province, China (No.A2012205072)
More Information
  • Received Date: May 09, 2012
  • A hybrid PIC/MC model is developed in this work for H 2 -xN 2 capacitively coupled radio–frequency (CCRF) discharges in which we take into account 43 kinds of collisions reaction processes between charged particles (e, H+3, H +2, H +, N+2, N + ) and ground-state molecules (H 2 , N 2 ). In addition, the mean energies and densities of electrons and ions (H + 3, H + 2, H + ), and electric field distributions in the H 2 -N 2 CCRF discharge are simulated by this model. Furthermore, the effects of addition of a variable percentage of nitrogen (0-30%) into the H 2 discharge on the plasma processes and discharge characteristics are studied. It is shown that by increasing the percentage of nitrogen added to the system, the RF sheath thickness will narrow, the sheath electric field will be enhanced, and the mean energy of hydrogen ions impacting the electrodes will be increased. Because the electron impact ionization and dissociative ionization rates increase when N 2 is added to the system, the electron mean density will increase while the electron mean energy and hydrogen ion density near the electrodes will decrease. This work aims to provide a theoretical basis for experimental studies and technological developments with regard to H 2 -N 2 CCRF plasmas.
  • 1 Dorner Reisel A, Kubler L, Irmer G, et al. 2005, Dia-mond Related Materials, 14: 1073;
    2 Chen S T, Chen G S, Yang T J, et al. 2003, Elec-trochem. Solid-State Lett., 6: F4;
    3 Nagai H, Hiramatsu M, Hori M, et al. 2003, Jpn. J.Appl. Phys., 42: L212;
    4 van Helden J H,Wagemans W, Yagci G. 2007, J. Appl.Phys., 101: 043305;
    5 Hirohata Y, Tsuchiya N, Hino T. 2001, Appl. Surf.Sci., 169: 612;
    6 Tatarova E, Dias F M, Gordiets B, et al. 2005, Plasma Sources Sci. Technol., 14: 19;
    7 Gordiets B, Ferrira C M, Pinheiro M J, et al. 1998,Plasma Sources Sci. Technol., 7: 363;
    8 Gordiets B, Ferrira C M, Pinheiro M J, et al. 1998,Plasma Sources Sci. Technol., 7: 379;
    9 Zhang L Z, Gao S X. 2006, Acta. Phys. Sin., 55: 3524 (in Chinese) Plasma Science and Technology, Vol.16, No.3, Mar. 2014;
    10 Nunomura S, Kondo M. 2007, J. Appl. Phys., 102:093306;
    11 Zhao S X, Zhang L Z. 2009, Nuclear Fusion and Plasma Physics, 29: 39 (in Chinese) ;
    12 Nanbu K. 2000, IEEE Transactions on Plasma Sci.,28: 917;
    13 Michael A Lieberman, Allan J Lichtenberg. 2006, Prin-ciples of Plasma Discharges and Materials Processing.Science Press, Beijing, p.46 (in Chinese) ;
    14 Itikawa Y, Hayshi M, Ichimura A. 1986, J. Phys.Chem. Ref. Data, 15: 985;
    15 Itikawa Y. 2006, J. Phys. Chem. Ref. Data, 35: 53;
    16 Bogaerts A, Gijbels R. 2002, Spectrochimica Acta B,57: 1071;
    17 Itikawa Y, Yoon J S, Song M Y, et al. 2008, J. Phys.Chem. Ref. Data, 37: 913;
    18 Phelps A V. 1991, J. Phys. Chem. Ref. Data, 20: 557;
    19 Tosi P, Dmitrijev O, Bassi D. 1992, J. Chem. Phys.,97: 3333;
    20 Phelps A V. 1990, J. Phys. Chem. Ref. Data, 19: 653;
    21 Phelps A V. 2009, Phys. Rev. E, 79: 066401;
    22 Simko T, Martisovits V. 1997, Phys. Rev. E, 56: 5908
  • Related Articles

    [1]Erhao GAO, Keying GUO, Qi JIN, Li HAN, Ning LI, Zuliang WU, Shuiliang YAO. NaCl aqueous solution as a novel electrode in a dielectric barrier discharge reactor for highly efficient ozone generation[J]. Plasma Science and Technology, 2023, 25(7): 075502. DOI: 10.1088/2058-6272/acbef6
    [2]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [3]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [4]Chuang WANG (王闯), Xi CHEN (陈曦), Kai TANG (唐凯), Pengfei LI (李鹏斐). Study on the discharge mechanism and EM radiation characteristics of Trichel pulse discharge in air[J]. Plasma Science and Technology, 2019, 21(5): 55402-055402. DOI: 10.1088/2058-6272/ab03ab
    [5]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [6]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [7]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [8]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [9]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [10]Xuewei ZHAO (赵雪维), Yonggang YU (余永刚), Shanshan MANG (莽珊珊), Xiaochun XUE (薛晓春). Study of the expansion characteristics of a pulsed plasma jet in air[J]. Plasma Science and Technology, 2017, 19(4): 45402-045402. DOI: 10.1088/2058-6272/aa596e

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return