Advanced Search+
ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06
Citation: ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06

Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge

Funds: supported by the Natural Science Foundation of Hebei Province, China (No.A2012205072)
More Information
  • Received Date: May 09, 2012
  • A hybrid PIC/MC model is developed in this work for H 2 -xN 2 capacitively coupled radio–frequency (CCRF) discharges in which we take into account 43 kinds of collisions reaction processes between charged particles (e, H+3, H +2, H +, N+2, N + ) and ground-state molecules (H 2 , N 2 ). In addition, the mean energies and densities of electrons and ions (H + 3, H + 2, H + ), and electric field distributions in the H 2 -N 2 CCRF discharge are simulated by this model. Furthermore, the effects of addition of a variable percentage of nitrogen (0-30%) into the H 2 discharge on the plasma processes and discharge characteristics are studied. It is shown that by increasing the percentage of nitrogen added to the system, the RF sheath thickness will narrow, the sheath electric field will be enhanced, and the mean energy of hydrogen ions impacting the electrodes will be increased. Because the electron impact ionization and dissociative ionization rates increase when N 2 is added to the system, the electron mean density will increase while the electron mean energy and hydrogen ion density near the electrodes will decrease. This work aims to provide a theoretical basis for experimental studies and technological developments with regard to H 2 -N 2 CCRF plasmas.
  • 1 Dorner Reisel A, Kubler L, Irmer G, et al. 2005, Dia-mond Related Materials, 14: 1073;
    2 Chen S T, Chen G S, Yang T J, et al. 2003, Elec-trochem. Solid-State Lett., 6: F4;
    3 Nagai H, Hiramatsu M, Hori M, et al. 2003, Jpn. J.Appl. Phys., 42: L212;
    4 van Helden J H,Wagemans W, Yagci G. 2007, J. Appl.Phys., 101: 043305;
    5 Hirohata Y, Tsuchiya N, Hino T. 2001, Appl. Surf.Sci., 169: 612;
    6 Tatarova E, Dias F M, Gordiets B, et al. 2005, Plasma Sources Sci. Technol., 14: 19;
    7 Gordiets B, Ferrira C M, Pinheiro M J, et al. 1998,Plasma Sources Sci. Technol., 7: 363;
    8 Gordiets B, Ferrira C M, Pinheiro M J, et al. 1998,Plasma Sources Sci. Technol., 7: 379;
    9 Zhang L Z, Gao S X. 2006, Acta. Phys. Sin., 55: 3524 (in Chinese) Plasma Science and Technology, Vol.16, No.3, Mar. 2014;
    10 Nunomura S, Kondo M. 2007, J. Appl. Phys., 102:093306;
    11 Zhao S X, Zhang L Z. 2009, Nuclear Fusion and Plasma Physics, 29: 39 (in Chinese) ;
    12 Nanbu K. 2000, IEEE Transactions on Plasma Sci.,28: 917;
    13 Michael A Lieberman, Allan J Lichtenberg. 2006, Prin-ciples of Plasma Discharges and Materials Processing.Science Press, Beijing, p.46 (in Chinese) ;
    14 Itikawa Y, Hayshi M, Ichimura A. 1986, J. Phys.Chem. Ref. Data, 15: 985;
    15 Itikawa Y. 2006, J. Phys. Chem. Ref. Data, 35: 53;
    16 Bogaerts A, Gijbels R. 2002, Spectrochimica Acta B,57: 1071;
    17 Itikawa Y, Yoon J S, Song M Y, et al. 2008, J. Phys.Chem. Ref. Data, 37: 913;
    18 Phelps A V. 1991, J. Phys. Chem. Ref. Data, 20: 557;
    19 Tosi P, Dmitrijev O, Bassi D. 1992, J. Chem. Phys.,97: 3333;
    20 Phelps A V. 1990, J. Phys. Chem. Ref. Data, 19: 653;
    21 Phelps A V. 2009, Phys. Rev. E, 79: 066401;
    22 Simko T, Martisovits V. 1997, Phys. Rev. E, 56: 5908
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [4]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [5]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [6]LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08
    [7]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (167) PDF downloads (832) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return