Advanced Search+
ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06
Citation: ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06

Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge

Funds: supported by the Natural Science Foundation of Hebei Province, China (No.A2012205072)
More Information
  • Received Date: May 09, 2012
  • A hybrid PIC/MC model is developed in this work for H 2 -xN 2 capacitively coupled radio–frequency (CCRF) discharges in which we take into account 43 kinds of collisions reaction processes between charged particles (e, H+3, H +2, H +, N+2, N + ) and ground-state molecules (H 2 , N 2 ). In addition, the mean energies and densities of electrons and ions (H + 3, H + 2, H + ), and electric field distributions in the H 2 -N 2 CCRF discharge are simulated by this model. Furthermore, the effects of addition of a variable percentage of nitrogen (0-30%) into the H 2 discharge on the plasma processes and discharge characteristics are studied. It is shown that by increasing the percentage of nitrogen added to the system, the RF sheath thickness will narrow, the sheath electric field will be enhanced, and the mean energy of hydrogen ions impacting the electrodes will be increased. Because the electron impact ionization and dissociative ionization rates increase when N 2 is added to the system, the electron mean density will increase while the electron mean energy and hydrogen ion density near the electrodes will decrease. This work aims to provide a theoretical basis for experimental studies and technological developments with regard to H 2 -N 2 CCRF plasmas.
  • 1 Dorner Reisel A, Kubler L, Irmer G, et al. 2005, Dia-mond Related Materials, 14: 1073;
    2 Chen S T, Chen G S, Yang T J, et al. 2003, Elec-trochem. Solid-State Lett., 6: F4;
    3 Nagai H, Hiramatsu M, Hori M, et al. 2003, Jpn. J.Appl. Phys., 42: L212;
    4 van Helden J H,Wagemans W, Yagci G. 2007, J. Appl.Phys., 101: 043305;
    5 Hirohata Y, Tsuchiya N, Hino T. 2001, Appl. Surf.Sci., 169: 612;
    6 Tatarova E, Dias F M, Gordiets B, et al. 2005, Plasma Sources Sci. Technol., 14: 19;
    7 Gordiets B, Ferrira C M, Pinheiro M J, et al. 1998,Plasma Sources Sci. Technol., 7: 363;
    8 Gordiets B, Ferrira C M, Pinheiro M J, et al. 1998,Plasma Sources Sci. Technol., 7: 379;
    9 Zhang L Z, Gao S X. 2006, Acta. Phys. Sin., 55: 3524 (in Chinese) Plasma Science and Technology, Vol.16, No.3, Mar. 2014;
    10 Nunomura S, Kondo M. 2007, J. Appl. Phys., 102:093306;
    11 Zhao S X, Zhang L Z. 2009, Nuclear Fusion and Plasma Physics, 29: 39 (in Chinese) ;
    12 Nanbu K. 2000, IEEE Transactions on Plasma Sci.,28: 917;
    13 Michael A Lieberman, Allan J Lichtenberg. 2006, Prin-ciples of Plasma Discharges and Materials Processing.Science Press, Beijing, p.46 (in Chinese) ;
    14 Itikawa Y, Hayshi M, Ichimura A. 1986, J. Phys.Chem. Ref. Data, 15: 985;
    15 Itikawa Y. 2006, J. Phys. Chem. Ref. Data, 35: 53;
    16 Bogaerts A, Gijbels R. 2002, Spectrochimica Acta B,57: 1071;
    17 Itikawa Y, Yoon J S, Song M Y, et al. 2008, J. Phys.Chem. Ref. Data, 37: 913;
    18 Phelps A V. 1991, J. Phys. Chem. Ref. Data, 20: 557;
    19 Tosi P, Dmitrijev O, Bassi D. 1992, J. Chem. Phys.,97: 3333;
    20 Phelps A V. 1990, J. Phys. Chem. Ref. Data, 19: 653;
    21 Phelps A V. 2009, Phys. Rev. E, 79: 066401;
    22 Simko T, Martisovits V. 1997, Phys. Rev. E, 56: 5908
  • Related Articles

    [1]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [2]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [3]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [4]GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05
    [5]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [6]CHI Yangyang(匙阳阳), ZHANG Yuantao(张远涛). Theoretical Study on the Characteristics of Atmospheric Radio Frequency Discharges by Altering Electrode Gap[J]. Plasma Science and Technology, 2014, 16(6): 582-587. DOI: 10.1088/1009-0630/16/6/08
    [7]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [8]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05

Catalog

    Article views (167) PDF downloads (832) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return