Advanced Search+
Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), Yuming YAN (严禹明), Hailong ZHAO (赵海龙), N A STROKIN. Spatial charge and compensation method in a whirler[J]. Plasma Science and Technology, 2017, 19(5): 55507-055507. DOI: 10.1088/2058-6272/aa59f4
Citation: Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), Yuming YAN (严禹明), Hailong ZHAO (赵海龙), N A STROKIN. Spatial charge and compensation method in a whirler[J]. Plasma Science and Technology, 2017, 19(5): 55507-055507. DOI: 10.1088/2058-6272/aa59f4

Spatial charge and compensation method in a whirler

Funds: This work was supported by National Natural Science Foundation of China (No. 51177020).
More Information
  • Received Date: September 24, 2016
  • Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirler channel. The plasma becomes non-neutral when it is emitted from the whirler, and the spatial charge leads to a beam divergence, which is unfavorable for mass separation. In order to compensate the spatial charge, a cathode is designed to transmit electrons and the quasi-neutral plasma beam. Experiment results have demonstrated that the auxiliary cathode can obviously improve the compensation degree of the spatial charge.
  • [1]
    Chauvin N et al 2004 Nucl. Instr. Methods Phys. Res. 521 149
    [2]
    Dropesky B J et al 1967 Nucl. Instr. Methods 48 329
    [3]
    Martynenko Y V 2009 Physics-Uspekhi. 52 1266
    [4]
    Fletcher D et al 1994 IEEE Trans. Magn. 30 4659
    [5]
    Dolgolenko D A and Muromkin Y A 2009 Physics-Uspekhi 52 345
    [6]
    Morozov A I et al 2008 High Temp 46 1
    [7]
    Morozov A I and Savel’ev V V 2005 Plasma Phys Rep. 31 417
    [8]
    Morozov A I and Semashko N N 2002 Tech. Phys. Lett. 28 1052
    [9]
    Paperny V L et al 2015 Plasma Sources Sci. Technol. 24 1
    [10]
    Smirnov V P et al 2013 Plasma Phys. Rep. 39 456
    [11]
    Bugrova A I et al 2002 Tech. Phys. Lett. 28 821
    [12]
    Bardakov V M, Kichigin G N and Strokin N A 2010 Tech. Phys. Lett. 36 185
    [13]
    Raitses Y et al 2006 Phys. Plasmas 13 014502
    [14]
    Chen F F 1980 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum)(https://doi.org/10.1088/ 0741-3335/38/1/004)
    [15]
    Hutchinson I H 2002 Principles of Plasma Diagnostics 2nd edn (Cambridge: Cambridge University)(https://doi.org/ 10.1017/cbo9780511613630)
  • Related Articles

    [1]Yongpeng MO, Zongqian SHI, Shenli JIA. Study of post-arc residual plasma dissipation process of vacuum circuit breakers based on a 2D particle-in-cell model[J]. Plasma Science and Technology, 2022, 24(4): 045401. DOI: 10.1088/2058-6272/ac5235
    [2]Zhefeng ZHANG, Lijun WANG, Ze YANG, Ming LUO, Jiagang LI. Numerical simulation of low-current vacuum arc jet considering anode evaporation in different axial magnetic fields[J]. Plasma Science and Technology, 2022, 24(4): 044002. DOI: 10.1088/2058-6272/ac3903
    [3]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [4]NIU Chunping (纽春萍), DING Juwen (丁炬文), YANG Fei (杨飞), DONG Delong (董得龙), RONG Mingzhe (荣命哲), XU Dan (徐丹). The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 460-464. DOI: 10.1088/1009-0630/18/5/02
    [5]NIU Chunping (纽春萍), DING Juwen (丁炬文), WU Yi (吴翊), YANG Fei (杨飞), DONG Delong (董得龙), FAN Xingyu (范星宇), RONG Mingzhe (荣命哲). Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 241-246. DOI: 10.1088/1009-0630/18/3/05
    [6]WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03
    [7]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [8]CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
    [9]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.
    [10]JIA Shenli, SONG Xiaochuan, HUO Xintao, SHI Zongqian, WANG Lijun. Investigation of Vacuum Arc Voltage Characteristics Under Different Axial Magnetic Field Profiles[J]. Plasma Science and Technology, 2010, 12(6): 729-733.

Catalog

    Article views (265) PDF downloads (678) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return