Advanced Search+
Guo XU (徐国), Bo RAO (饶波), Yonghua DING (丁永华), Mao LI (李茂), Da LI (李达), Ruo JIA (贾若), Minxiong YAN (严民雄), Xinke JI (吉新科), Nengchao WANG (王能超), Zhuo HUANG (黄卓), Daojing GUO (郭道靖), Lai PENG (彭莱). Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(8): 85601-085601. DOI: 10.1088/2058-6272/aabd2f
Citation: Guo XU (徐国), Bo RAO (饶波), Yonghua DING (丁永华), Mao LI (李茂), Da LI (李达), Ruo JIA (贾若), Minxiong YAN (严民雄), Xinke JI (吉新科), Nengchao WANG (王能超), Zhuo HUANG (黄卓), Daojing GUO (郭道靖), Lai PENG (彭莱). Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(8): 85601-085601. DOI: 10.1088/2058-6272/aabd2f

Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak

Funds: This work was supported by the National ITER Project Foundation of China (No. 2014GB118000) and National Natural Science Foundation of China (No. 11405068).
More Information
  • Received Date: March 15, 2018
  • To further research the response of the tearing mode (TM) to dynamic resonant magnetic perturbation (DRMP) on the J-TEXT tokamak, a modified series resonant inverter power supply (MSRIPS) with a function of discrete variable frequency is designed for DRMP coils in this study. The MSRIPS is an AC–DC–AC converter, including a phase-controlled rectifier, an LC filter, an insulated gate bipolar transistor (IGBT) full bridge, a matching transformer, three resonant capacitors with different capacitance values, and three corresponding silicon controlled rectifier (SCR) switches. The function of discrete variable frequency is realized by switching over different resonant capacitors with corresponding SCR switches while matching the corresponding driving frequency of the IGBT full bridge. A detailed switching strategy of the SCR switch is put forward to obtain sinusoidal current waveform and realize current waveform smooth transition during frequency conversion. In addition, a resistor and thyristor bleeder is designed to protect the SCR switch from overvoltage. Manufacturing of the MSRIPS is completed, and the MSRIPS equipment can output current with an amplitude of 1.5 kA when its working frequency jumps among different frequencies. Moreover, the current waveform is sinusoidal and can smoothly transition during frequency conversion. Furthermore, the transition time when the current amplitude rises from zero to a steady state is less than 2 ms during frequency conversion. By using the MSRIPS, the expected discrete variable frequency DRMP is generated, and the phenomenon of the TM being locked to the discrete variable frequency DRMP is observed on the J-TEXT tokamak.
  • [1]
    Chang Z et al 1995 Phys. Rev. Lett. 74 4663
    [2]
    Nave M F F and Wesson J A 1990 Nucl. Fusion 30 2575
    [3]
    Hender T C et al 1992 Nucl. Fusion 32 2091
    [4]
    Elgriw S et al 2011 Nucl. Fusion 51 113008
    [5]
    Rao B et al 2013 Phys. Lett. A 377 315
    [6]
    Rao B et al 2013 Plasma Phys. Control. Fusion 55 122001
    [7]
    Glasser A H, Greene J M and Johnson J L 1976 Phys. Fluids 19 567
    [8]
    Connor J W, Waelbroeck F L and Wilson H R 2001 Phys. Plasmas 8 2835
    [9]
    Rao B et al 2014 Fusion Eng. Des. 89 378
    [10]
    Yi B et al 2015 IEEE Trans. Plasma Sci. 43 594
    [11]
    Yi B et al 2013 Fusion Eng. Des. 88 1528
    [12]
    Ngoc H P et al 2011 IEEE Trans. Power Electron. 26 3357
    [13]
    Yi B et al 2014 Rev. Sci. Instrum. 85 113501
  • Related Articles

    [1]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Jianyuan XIAO (肖建元), Hong QIN (秦宏), Jian LIU (刘健). Structure-preserving geometric particle-in- cell methods for Vlasov-Maxwell systems[J]. Plasma Science and Technology, 2018, 20(11): 110501. DOI: 10.1088/2058-6272/aac3d1
    [4]Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195
    [5]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [6]Danijela VUJOŠEVIC, Uroš CVELBAR, Urška REPNIK, Martina MODIC, Saša LAZOVIC, Tina ZAVAŠNIK-BERGANT, Nevena PUAC, Boban MUGOŠA, Evangelos GOGOLIDES, Zoran Lj PETROVIC, Miran MOZETIC. Plasma effects on the bacteria Escherichia coli via two evaluation methods[J]. Plasma Science and Technology, 2017, 19(7): 75504-075504. DOI: 10.1088/2058-6272/aa656b
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]JIANG Lina(姜丽娜), WANG Hongyu(王虹宇), SUN Peng(孙鹏). The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam[J]. Plasma Science and Technology, 2014, 16(1): 12-16. DOI: 10.1088/1009-0630/16/1/03
    [9]KONG Lingbao (孔令宝), WANG Hongyu (王虹宇), HOU Zhiling (侯志灵), JIN Haibo (金海波). The Self-Consistent Nonlinear Theory of Charged Particle Beam Acceleration by Slowed Circularly Polarized Electromagnetic Waves[J]. Plasma Science and Technology, 2013, 15(12): 1174-1177. DOI: 10.1088/1009-0630/15/12/02
    [10]DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02
  • Cited by

    Periodical cited type(14)

    1. Chen, H., Chen, W. On fast-ion transport induced by edge localized modes. Nuclear Fusion, 2025, 65(3): 036028. DOI:10.1088/1741-4326/adb0df
    2. Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535
    3. Zhang, Y.-N., He, K.-Y., Sun, Y.-W. et al. Influence of the far non-resonant components of high-n resonant magnetic perturbations on energetic passing ions loss. Nuclear Fusion, 2024, 64(4): 046012. DOI:10.1088/1741-4326/ad249e
    4. Zocco, A., Mishchenko, A., Könies, A. et al. Nonlinear drift-wave and energetic particle long-time behaviour in stellarators: Solution of the kinetic problem. Journal of Plasma Physics, 2023, 89(3): 905890307. DOI:10.1017/S002237782300048X
    5. Bierwage, A., Shinohara, K., Kazakov, Y.O. et al. Energy-selective confinement of fusion-born alpha particles during internal relaxations in a tokamak plasma. Nature Communications, 2022, 13(1): 3941. DOI:10.1038/s41467-022-31589-6
    6. Rhee, T., Kim, J., Kim, K. et al. Simulation study of fast ion losses associated with the rotating n = 1 resonant magnetic perturbations in KSTAR. Nuclear Fusion, 2022, 62(6): 066028. DOI:10.1088/1741-4326/ac5e28
    7. Zhu, X., Wang, F., Chen, W. et al. Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma. Plasma Science and Technology, 2022, 24(2): 025102. DOI:10.1088/2058-6272/ac41be
    8. Hu, Y., Xu, Y., Hao, B. et al. Effects of resonant magnetic perturbations on neutral beam heating in a tokamak. Physics of Plasmas, 2021, 28(12): 122502. DOI:10.1063/5.0069792
    9. Qiu, Z., Chen, L., Zonca, F. et al. Evidence of 'two plasmon' decay of energetic particle induced geodesic acoustic mode. New Journal of Physics, 2021, 23(6): 063045. DOI:10.1088/1367-2630/ac047a
    10. Sanchis, L., Garcia-Munoz, M., Viezzer, E. et al. Optimizing beam-ion confinement in ITER by adjusting the toroidal phase of the 3D magnetic fields applied for ELM control. Nuclear Fusion, 2021, 61(4): 046006. DOI:10.1088/1741-4326/abdfdd
    11. White, R., Bierwage, A. Particle resonances in toroidal fusion devices. Physics of Plasmas, 2021, 28(3): 032507. DOI:10.1063/5.0040975
    12. Yu, L., Xue, E., Zhang, D. et al. Simulation of the loss of passing fast ions induced by magnetic islands in EAST tokamak plasmas. AIP Advances, 2021, 11(2): 025020. DOI:10.1063/5.0032049
    13. Yang, Y.R., Chen, W., Ye, M.Y. et al. Hybrid simulations of reversed shear Alfven eigenmodes and related nonlinear resonance with fast ions in a tokamak plasma. Nuclear Fusion, 2020, 60(10): 106012. DOI:10.1088/1741-4326/aba673
    14. Heidbrink, W.W., White, R.B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Physics of Plasmas, 2020, 27(3): 030901. DOI:10.1063/1.5136237

    Other cited types(0)

Catalog

    Article views (190) PDF downloads (334) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return