Advanced Search+
Yunxian TIAN (田云先), Xiaolin JIN (金晓林), Xiaoliang GU (谷晓梁), Weizhong YAN (颜卫忠), Jianqing LI (李建清), Bin LI (李斌). Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil[J]. Plasma Science and Technology, 2018, 20(8): 85002-085002. DOI: 10.1088/2058-6272/aac42e
Citation: Yunxian TIAN (田云先), Xiaolin JIN (金晓林), Xiaoliang GU (谷晓梁), Weizhong YAN (颜卫忠), Jianqing LI (李建清), Bin LI (李斌). Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil[J]. Plasma Science and Technology, 2018, 20(8): 85002-085002. DOI: 10.1088/2058-6272/aac42e

Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil

Funds: This work was supported by Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2016J065 and ZYGX2016J066).
More Information
  • Received Date: November 30, 2017
  • A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics (QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron (or positron), and the other is pair production by a gamma-ray photon interacting with the laser field. This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field.
  • [1]
    Yanovsky V 2008 Opt. Express 16 2109–14
    [2]
    Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221
    [3]
    Papadopoulos D N et al 2016 High Power Laser Sci. Eng. 4 e34
    [4]
    Hernandez-Gomez C 2010 The Vulcan 10 PW Project 6th Int. Conf. on Inertial Fusion Sci. Appl. (San Francisco, CA) (https://doi.org/10.1088/1742-6596/244/3/032006)
    [5]
    Yu L P et al 2018 Opt. Express 26 2625
    [6]
    Schwinger J 1951 Phys. Rev. 82 664
    [7]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [8]
    Grismayer T et al 2016 Phys. Plasmas 23 056706
    [9]
    Wang H Y et al 2015 Phys. Plasmas 22 033102
    [10]
    Brady C S et al 2013 Plasma Phys. Control. Fusion 55 124016
    [11]
    Shen B and Meyer-ter-Vehn J 2002 Phys. Rev. E 65 016405
    [12]
    Elkina N V et al 2011 Phys. Rev. Spec. Top. Accel. Beams 14 054401
    [13]
    Erber T 1996 Rev. Mod. Phys. 38 626
    [14]
    Bethe H A and Heitler W 1934 Proc. R. Soc. A 146 83
    [15]
    Breit G and Wheeler J A 1934 Phys. Rev. 46 1087
    [16]
    Klepikov N P 1954 Zh. éksp. Teor. Fiz. 26 19
    [17]
    Kirk J G, Bell A R and Arka I 2009 Plasma Phys. Control. Fusion 51 085008
    [18]
    Zhu X L et al 2016 Nat. Commun. 7 13686
    [19]
    Wallin E, Gonoskov A and Marklund M 2015 Phys. Plasmas 22 033117
    [20]
    Yang X H et al 2012 Phys. Plasmas 19 113110
    [21]
    Ridgers C P et al 2014 J. Comput. Phys. 260 273
    [22]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [23]
    Vranic M et al 2016 New J. Phys. 18 073035
    [24]
    Green D G and Harvey C N 2015 Comput. Phys. Commun. 192 313
    [25]
    Wang W M et al 2017 Phys. Rev. E 96 013201
    [26]
    Wang W M et al 2015 Phys. Rev. E 91 013101
    [27]
    Jin X L et al 2015 Bumblebee: a 1D3V relativistic PIC/MCC software for laser-plasma interaction The 42nd IEEE Int. Conf. on Plasma Science (ICOPS) (Belek, Turkey, 24–28 May 2015) (New York: IEEE) 3P-35
    [28]
    Shen C S 1972 Phys. Rev. D 6 2736
    [29]
    Ridgers C P et al 2013 Phys. Plasmas 20 056701
  • Related Articles

    [1]Ronggang WANG (王荣刚), Ben LI (李犇), Tongkai ZHANG (张桐恺), Jiting OUYANG (欧阳吉庭), Yurong SUN (孙玉荣). The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 85002-085002. DOI: 10.1088/2058-6272/ab777b
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]Hua LI (李花), Zhengduo WANG (王正铎), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). Insight into the remaining high surface energy of atmospheric DBD plasma-treated polyethylene web after three months’ aging[J]. Plasma Science and Technology, 2019, 21(1): 15504-015504. DOI: 10.1088/2058-6272/aae2ad
    [4]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [5]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [6]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [7]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [8]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22
    [9]JIAO Changfeng (焦长峰), XU Furong (许甫荣), SUN Yang (孙扬). Angular Momentum Projected Potential-energy-surface Calculation: Application to 178Hf[J]. Plasma Science and Technology, 2012, 14(6): 514-517. DOI: 10.1088/1009-0630/14/6/17
    [10]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.

Catalog

    Article views (165) PDF downloads (481) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return