Advanced Search+
Yunxian TIAN (田云先), Xiaolin JIN (金晓林), Xiaoliang GU (谷晓梁), Weizhong YAN (颜卫忠), Jianqing LI (李建清), Bin LI (李斌). Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil[J]. Plasma Science and Technology, 2018, 20(8): 85002-085002. DOI: 10.1088/2058-6272/aac42e
Citation: Yunxian TIAN (田云先), Xiaolin JIN (金晓林), Xiaoliang GU (谷晓梁), Weizhong YAN (颜卫忠), Jianqing LI (李建清), Bin LI (李斌). Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil[J]. Plasma Science and Technology, 2018, 20(8): 85002-085002. DOI: 10.1088/2058-6272/aac42e

Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil

Funds: This work was supported by Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2016J065 and ZYGX2016J066).
More Information
  • Received Date: November 30, 2017
  • A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics (QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron (or positron), and the other is pair production by a gamma-ray photon interacting with the laser field. This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field.
  • [1]
    Yanovsky V 2008 Opt. Express 16 2109–14
    [2]
    Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221
    [3]
    Papadopoulos D N et al 2016 High Power Laser Sci. Eng. 4 e34
    [4]
    Hernandez-Gomez C 2010 The Vulcan 10 PW Project 6th Int. Conf. on Inertial Fusion Sci. Appl. (San Francisco, CA) (https://doi.org/10.1088/1742-6596/244/3/032006)
    [5]
    Yu L P et al 2018 Opt. Express 26 2625
    [6]
    Schwinger J 1951 Phys. Rev. 82 664
    [7]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [8]
    Grismayer T et al 2016 Phys. Plasmas 23 056706
    [9]
    Wang H Y et al 2015 Phys. Plasmas 22 033102
    [10]
    Brady C S et al 2013 Plasma Phys. Control. Fusion 55 124016
    [11]
    Shen B and Meyer-ter-Vehn J 2002 Phys. Rev. E 65 016405
    [12]
    Elkina N V et al 2011 Phys. Rev. Spec. Top. Accel. Beams 14 054401
    [13]
    Erber T 1996 Rev. Mod. Phys. 38 626
    [14]
    Bethe H A and Heitler W 1934 Proc. R. Soc. A 146 83
    [15]
    Breit G and Wheeler J A 1934 Phys. Rev. 46 1087
    [16]
    Klepikov N P 1954 Zh. éksp. Teor. Fiz. 26 19
    [17]
    Kirk J G, Bell A R and Arka I 2009 Plasma Phys. Control. Fusion 51 085008
    [18]
    Zhu X L et al 2016 Nat. Commun. 7 13686
    [19]
    Wallin E, Gonoskov A and Marklund M 2015 Phys. Plasmas 22 033117
    [20]
    Yang X H et al 2012 Phys. Plasmas 19 113110
    [21]
    Ridgers C P et al 2014 J. Comput. Phys. 260 273
    [22]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [23]
    Vranic M et al 2016 New J. Phys. 18 073035
    [24]
    Green D G and Harvey C N 2015 Comput. Phys. Commun. 192 313
    [25]
    Wang W M et al 2017 Phys. Rev. E 96 013201
    [26]
    Wang W M et al 2015 Phys. Rev. E 91 013101
    [27]
    Jin X L et al 2015 Bumblebee: a 1D3V relativistic PIC/MCC software for laser-plasma interaction The 42nd IEEE Int. Conf. on Plasma Science (ICOPS) (Belek, Turkey, 24–28 May 2015) (New York: IEEE) 3P-35
    [28]
    Shen C S 1972 Phys. Rev. D 6 2736
    [29]
    Ridgers C P et al 2013 Phys. Plasmas 20 056701
  • Related Articles

    [1]Chenyao JIN, Chi-Shung YIP, Haigang SUN, Di JIANG, Wei ZHANG, Guosheng XU, Liang WANG. Presheath formation and area design limit satellite-based Langmuir probes[J]. Plasma Science and Technology, 2023, 25(12): 124001. DOI: 10.1088/2058-6272/ace676
    [2]Yaroslav MURZAEV, Gennadii LIZIAKIN, Andrey GAVRIKOV, Rinat TIMIRKHANOV, Valentin SMIRNOV. A comparison of emissive and cold floating probe techniques for electric potential measurements in rf inductive discharge[J]. Plasma Science and Technology, 2019, 21(4): 45401-045401. DOI: 10.1088/2058-6272/aaf250
    [3]Shuichi SATO, Hiromu KAWANA, Tatsushi FUJIMINE, Mikio OHUCHI. Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods[J]. Plasma Science and Technology, 2018, 20(8): 85405-085405. DOI: 10.1088/2058-6272/aabfcd
    [4]Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43
    [5]Jianquan LI (李建泉), Wenqi LU (陆文琪), Jun XU (徐军), Fei GAO (高飞), Younian WANG (王友年). Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements[J]. Plasma Science and Technology, 2018, 20(2): 24002-024002. DOI: 10.1088/2058-6272/aa97cd
    [6]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [7]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [8]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [9]Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15
    [10]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
  • Cited by

    Periodical cited type(1)

    1. Li, R., Huang, T., Yu, M. et al. Local wavelength evolution and Landau damping of electrostatic plasma wave driven by an ultra-relativistic electron beam in dense inhomogeneous plasma. Plasma Science and Technology, 2023, 25(7): 075001. DOI:10.1088/2058-6272/acb31e

    Other cited types(0)

Catalog

    Article views (165) PDF downloads (481) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return