Advanced Search+
Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
Citation: Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30

CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency

Funds: The authors wish to acknowledge the supports of National Natural Science Foundation of China (Nos. 11775155, 51561135013, 21603202).
More Information
  • Received Date: July 03, 2018
  • A key problem in CO2 conversion by thermal plasma is suppressing the inverse reactions, CO+O→CO2 and CO+0.5O2 →CO2, to simultaneously obtain high CO yield and energy efficiency. This can be done by quickly quenching the decomposed gas or rapidly taking away free oxygen from decomposed gas. In this paper, experiments of CO2 conversion by thermal plasma with carbon as a reducing agent are presented. Carbon quickly devoured free oxygen in thermal plasma decomposed gas, and not only is the inverse reaction completely suppressed, but the discharge energy to form oxygen atoms, oxygen molecular, and thermal energy is also reused. A CO2 conversion rate of 67%–94% and the corresponding electric energy efficiency of about 70% are achieved, both are much higher than that seen so far by other plasma implementations.
  • [1]
    Hartley P et al 2016 Energ. J. 37 823 (http://www.owlnet. rice.edu/~tl5/EnergyIEEJ.pdf)
    [2]
    Matsumoto K I 2015 PLoS One 10 e0144884
    [3]
    Wilson I A G and Styring P 2017 Front. Energy Res. 5 19
    [4]
    Navarrete A et al 2017 Energy Technol. 5 796
    [5]
    Mikkelsen M, J?rgensena M and Krebs F C 2010 Energy Environ. Sci. 3 43
    [6]
    Graves C et al 2011 Renew. Sust. Energ. Rev. 15 1
    [7]
    Lavoie J M 2014 Front. Chem. 2 81
    [8]
    Pakhare D and Spivey J 2014 Chem. Soc. Rev. 43 7813
    [9]
    Bongers W et al 2017 Plasma Processes Polym. 14 1600126
    [10]
    Nunnally T et al 2011 J. Phy. D Appl. Phys. 44 274009
    [11]
    Li J et al 2017 J. CO 2 Util. 21 72
    [12]
    Yang T et al 2018 Plasma Sci. Technol. 20 065502
    [13]
    Chen G et al 2016 Appl. Catal. B-Environ. 190 115
    [14]
    Ramakers M et al 2017 Chem. Sus. Chem. 10 2642
    [15]
    Wu J J and Zhou X D 2016 Chinese J. Catal. 37 999
    [16]
    Snoeckx R and Bogaerts A 2017 Chem. Soc. Rev. 46 5805
    [17]
    Bogaerts A et al 2015 Faraday Discuss. 183 217
    [18]
    Fridman A 2008 Plasma Chemistry (London: Cambridge University Press)
    [19]
    Yun S H, Kim G J and Park D W 1997 J. Ind. Eng. Chem. 4 293
    [20]
    Huczko A and Szymański A 1984 Plasma Chem. Plasma Proces. 4 59
    [21]
    Polak L S et al 1977 Carbon Dioxide Dissociation in Electric Discharges: Arc Discharge (Moscow: Institute of Petrochemical Synthesis, USSR Academy of Sciences)
  • Related Articles

    [1]Xiaojuan WANG, Zhanghu HU, Younian WANG. Multi-layer structure formation of relativistic electron beams in plasmas[J]. Plasma Science and Technology, 2022, 24(2): 025001. DOI: 10.1088/2058-6272/ac4155
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [4]Mohamed MOSTAFAOUI, Djilali BENYOUCEF. Electrical model parameters identification of radiofrequency discharge in argon through 1D3V/PIC-MC model[J]. Plasma Science and Technology, 2018, 20(9): 95401-095401. DOI: 10.1088/2058-6272/aac3cf
    [5]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [6]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [7]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [8]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [9]XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
    [10]HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688.

Catalog

    Article views (168) PDF downloads (600) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return