Advanced Search+
Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
Citation: Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432

Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch

Funds: This work is supported by the Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (No. SKLIPR1601).
More Information
  • Received Date: July 22, 2018
  • Gas pressurized closing switches are one of the most important elements in FLTD-based
    systems. Improving the trigger performance of gas switches is useful for optimizing the output
    parameters and the reliability of the FLTD. In this paper, the breakdown characteristics of the
    trigger gap and the overvoltage gap are studied experimentally. The reasons for the different
    breakdown performance of the two gaps are also investigated. The results show that
    the breakdown delay of the trigger gap is more influenced by the trigger voltage, while the
    breakdown delay of the overvoltage gap is more influenced by the working coefficient and
    always higher than that of the trigger gap. The jitter of the trigger gap is more influenced by the
    trigger voltage and accounts more than 60% of the total switch jitter, while the jitter of the
    overvoltage gap is hardly changed with the trigger voltage as well as the working coefficient and
    maintains less than 1.4 ns. It is proved that the discharging product from the trigger gap can
    effectively reduce the breakdown delay and jitter of the overvoltage gap. Based on that, the effect
    and improvement of pre-ionization on the two gaps are also studied. It is concluded that the jitter
    of the trigger gap reduces obviously when the pre-ionization is added, while the pre-ionization
    almost has no effect on the jitter of the overvoltage gap. The jitter of the overvoltage gap is about
    two times higher than the trigger gap in the pre-ionizing switch.
  • [1]
    Stygar W A et al 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401
    [2]
    Leckbee J J et al 2006 IEEE Trans. Plasma Sci. 34 1888
    [3]
    Sun F J et al 2017 High Power Laser Part. Beams 29 29025001 (in Chinese)
    [4]
    Zhai R X et al 2018 Plasma Sci. Technol. 20 045505
    [5]
    Zhou L et al 2016 Phys. Rev. Spec. Top. Accel. Beams 19 030401
    [6]
    Mazarakis M G et al 2010 IEEE Trans. Plasma Sci. 38 704
    [7]
    Woodworth J R et al 2011 Phys. Rev. Spec. Top. Accel. Beams 14 040401
    [8]
    Sheng L et al 2014 Plasma Sci. Technol. 16 677
    [9]
    Woodworth J R et al 2010 Phys. Rev. Spec. Top. Accel. Beams 13 080401
    [10]
    Liu P et al 2012 Plasma Sci. Technol. 14 347
    [11]
    Cong P T et al 2013 IEEE Trans. Plasma Sci. 41 187
    [12]
    Kim A A et al 2009 Phys. Rev. Spec. Top. Accel. Beams 12 050402
    [13]
    Liu X D et al 2009 Plasma Sci. Technol. 11 725
    [14]
    Tie W H et al 2018 Plasma Sci. Technol. 20 014009
    [15]
    Chen L et al 2015 High Voltage Eng. 41 1798 (in Chinese)
    [16]
    Li J N et al 2015 IEEE Trans. Plasma Sci. 43 3293
  • Related Articles

    [1]Feng WANG, Jiquan LI, Hongpeng QU, Xiaodong PENG. Gyrokinetic simulation of magnetic-island-induced electric potential vortex mode[J]. Plasma Science and Technology, 2024, 26(1): 015103. DOI: 10.1088/2058-6272/ad0d57
    [2]Bei LIU, Hua LIANG, Borui ZHENG. Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing[J]. Plasma Science and Technology, 2023, 25(1): 015503. DOI: 10.1088/2058-6272/ac7cb8
    [3]Chaoxing DAI (戴超星), Chao SONG (宋超), Xue GUO (郭雪), Wentao SUN (孙文涛), Zhiqiang GUO (郭志强), Fucheng LIU (刘富成), Yafeng HE (贺亚峰). Rotation of dust vortex in a metal saw structure in dusty plasma[J]. Plasma Science and Technology, 2020, 22(3): 34008-034008. DOI: 10.1088/2058-6272/ab580b
    [4]Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0
    [5]Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95
    [6]Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
    [7]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [8]LIU Xiaodong(刘晓东), FU Bao(付豹), ZHUANG Ming(庄明). The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution[J]. Plasma Science and Technology, 2014, 16(3): 288-293. DOI: 10.1088/1009-0630/16/3/21
    [9]ZHENG Borui (郑博睿), GAO Chao (高超), LI Yibin (李一滨), LIU Feng (刘锋), LUO Shijun (罗时钧). Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation[J]. Plasma Science and Technology, 2013, 15(4): 350-356. DOI: 10.1088/1009-0630/15/4/08
    [10]ZHENG Borui (郑博睿), GAO Chao(高超), LI Yibin(李一滨), LIU Feng(刘峰), LUO Shijun(罗时钧. Flow Control over a Conical Forebody by Duty-Cycle Actuations[J]. Plasma Science and Technology, 2012, 14(1): 58-63. DOI: 10.1088/1009-0630/14/1/13
  • Cited by

    Periodical cited type(5)

    1. Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0
    2. Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476
    3. Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174
    4. ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003
    5. Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003

    Other cited types(0)

Catalog

    Article views (208) PDF downloads (233) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return