Advanced Search+
Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1
Citation: Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1

Reduced chemistries with the Quantemol database (QDB)

  • Typical feed gas mixtures used in technological and other plasmas may give rise to reaction networks involving several hundred reactions. Such chemistries are often too large to be used in full reactor simulations and it is therefore desirable to construct reduced chemistry networks which mimic as closely as possible the behavior of the full chemistry but employ far fewer individual reactions and species. Constructed chemistries are available from the Quantemol database (QDB) and two approaches to constructing reduced chemistry from these chemistries based on (a) physical intuition and (b) sensitivity analysis of dominant reaction pathways, are explored. In doing this it is necessary to consider different pressure and power regimes. Reduced chemistry sets are presented for CF4 /O2/N2/H2, for which 396 reactions and 52 species are reduced to 71 reactions and 26 species, and for pure O2, for which 45 reactions and 10 species are reduced to 34 reactions.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return