Advanced Search+
Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1
Citation: Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1

Reduced chemistries with the Quantemol database (QDB)

Funds: This project received funding from the Electronic Component Systems for European Leadership Joint Undertaking under the Powerbase project, grant agreement No 662133.
More Information
  • Received Date: November 02, 2018
  • Typical feed gas mixtures used in technological and other plasmas may give rise to reaction networks involving several hundred reactions. Such chemistries are often too large to be used in full reactor simulations and it is therefore desirable to construct reduced chemistry networks which mimic as closely as possible the behavior of the full chemistry but employ far fewer individual reactions and species. Constructed chemistries are available from the Quantemol database (QDB) and two approaches to constructing reduced chemistry from these chemistries based on (a) physical intuition and (b) sensitivity analysis of dominant reaction pathways, are explored. In doing this it is necessary to consider different pressure and power regimes. Reduced chemistry sets are presented for CF4 /O2/N2/H2, for which 396 reactions and 52 species are reduced to 71 reactions and 26 species, and for pure O2, for which 45 reactions and 10 species are reduced to 34 reactions.
  • [1]
    Bartschat K and Kushner M J 2016 Proc. Nat. Acad. Sci. 113 7026
    [2]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [3]
    Yoon J S et al 2011 AIP Conf. Proc. 1344 197
    [4]
    Wakelam V et al 2015 Astrophys. J. Suppl. 217 20
    [5]
    Celiberto R et al 2016 Plasma Sources Sci. Technol. 25 033004
    [6]
    Pitchford L C et al 2017 Plasma Proc. Polymers 14 1600098
    [7]
    Tennyson J et al 2017 Plasma Sources Sci. Technol. 26 055014
    [8]
    Song M Y et al 2015 J. Phys. Chem. Ref. Data 44 023101
    [9]
    Song M Y et al 2017 J. Phys. Chem. Ref. Data 46 013106
    [10]
    Song M Y et al 2017 J. Phys. Chem. Ref. Data 46 043104
    [11]
    COMSOL Multiphyiscs Software, see www.comsol.com/ comsol-multiphysics
    [12]
    Holdship J et al 2018 Astrophys. J. 116 866
    [13]
    Markosyan A H et al 2014 Comp. Phys. Comms. 185 2697
    [14]
    Kokkoris M et al 2008 J. Phys. D: Appl. Phys. 41 195211
    [15]
    Kokkoris G et al 2009 J. Phys. D: Appl. Phys. 42 055209
    [16]
    Turner M M 2016 Plasma Sources Sci. Technol. 25 015003
    [17]
    Lam S H 1995 Reduced chemistry modelling and sensitivity analysis Mechanical and Aerospace Engineering, Princeton University, Phys. 42 055209 (https://researchgate.net/ publication/2504582_Reduced_Chemistry_Modeling_and_ Sensitivity_Analysis)
    [18]
    Fracassi F et al 1995 J. Vac. Sci. Technol. A 13 335
    [19]
    Matsuo P J et al 1997 J. Vac. Sci. Technol. A 15 1801
    [20]
    Premachandran V 1990 Appl. Phys. Letts. 57 678
    [21]
    Christophorou L G, Olthoff J K and Rao M V V S 1996 J. Phys. Chem. Ref. Data 25 1341
    [22]
    Song S H and Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028
    [23]
    Hayash M 1979 J. Phys. Colloques 40 661
    [24]
    Phelps A V 1975 Compilation of Electron Cross Sections (unpublished)
    [25]
    Hayashi M 1990 Electron collision cross-sections determined from beam and swarm data by Boltzmann analysis ed M Capitelli and J N Bardsley Nonequilibrium Processes in Partially Ionized Gases vol 1990 (New York: Springer) p 333
    [26]
    Stief L J 1970 J. Chem. Phys. 52 4841
    [27]
    Bonham R A 1994 Jpn. J. Appl. Phys. 33 4157
    [28]
    Vasenkov A V et al 2004 J. Vac. Sci. Technol. A 22 511
    [29]
    Bose D et al 2003 Plasma Sources Sci. Technol. 12 225
    [30]
    Yang W et al 2018 Plasma Sources Sci. Technol. 27 075006
    [31]
    Brian J and Mitchell A 1990 Phys. Rep. 186 215
    [32]
    Itikawa Y 2009 J. Phys. Chem. Ref. Data 38 1
    [33]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
    [34]
    Turner M M 2015 Plasma Sources Sci. Technol. 24 035027
    [35]
    Peerenboom K et al 2015 Plasma Sources Sci. Technol. 24 025004
  • Related Articles

    [1]Ziqi FANG, Haohua ZONG, Yun WU, Hua LIANG, Zhi SU. Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators[J]. Plasma Science and Technology, 2024, 26(2): 025503. DOI: 10.1088/2058-6272/ad0c99
    [2]Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
    [3]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [4]LIU Zhijie (刘志杰), WANG Wenchun (王文春), YANG Dezheng (杨德正), WANG Sen (王森), DAI Leyang (戴乐阳). Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor[J]. Plasma Science and Technology, 2016, 18(7): 759-763. DOI: 10.1088/1009-0630/18/7/10
    [5]GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09
    [6]JIN Yong(金涌), LI Baoming(栗保明). Calculation of Plasma Radiation in Electrothermal-Chemical Launcher[J]. Plasma Science and Technology, 2014, 16(1): 50-53. DOI: 10.1088/1009-0630/16/1/11
    [7]ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14
    [8]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [9]YUAN Ying (袁颖), YE Chao (叶超), CHEN Tian (陈天), GE Shuibin (葛水兵), LIU Huiming (刘卉敏), CUI Jin (崔进), XU Yijun (徐轶君), DENG Yanhong (邓艳红), NING Zhaoyuan (宁兆元). C2F6/O2/Ar Plasma Chemistry of 60MHz/2MHz Dual- frequency Discharge and Its Effect on Etching of SiCOH Low-k Films[J]. Plasma Science and Technology, 2012, 14(1): 48-53. DOI: 10.1088/1009-0630/14/1/11
    [10]YANG Qi, HU Hui, CHEN Weipeng, XU jie, ZHANG Jinli, WU Shuang. The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge[J]. Plasma Science and Technology, 2011, 13(6): 702-707.
  • Cited by

    Periodical cited type(2)

    1. Yang, H., Zhang, J., Shen, Z. Water-based metamaterial absorber for temperature modulation. Physica Scripta, 2024, 99(10): 105563. DOI:10.1088/1402-4896/ad7b8a
    2. Liu, Y.L., Chen, W.C., Guo, B. Magneto-optical effects on the properties of the photonic spin Hall effect owing to the defect mode in photonic crystals with plasma. AIP Advances, 2019, 9(7): 075111. DOI:10.1063/1.5094664

    Other cited types(0)

Catalog

    Article views (321) PDF downloads (562) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return