Advanced Search+
Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1
Citation: Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1

Reduced chemistries with the Quantemol database (QDB)

Funds: This project received funding from the Electronic Component Systems for European Leadership Joint Undertaking under the Powerbase project, grant agreement No 662133.
More Information
  • Received Date: November 02, 2018
  • Typical feed gas mixtures used in technological and other plasmas may give rise to reaction networks involving several hundred reactions. Such chemistries are often too large to be used in full reactor simulations and it is therefore desirable to construct reduced chemistry networks which mimic as closely as possible the behavior of the full chemistry but employ far fewer individual reactions and species. Constructed chemistries are available from the Quantemol database (QDB) and two approaches to constructing reduced chemistry from these chemistries based on (a) physical intuition and (b) sensitivity analysis of dominant reaction pathways, are explored. In doing this it is necessary to consider different pressure and power regimes. Reduced chemistry sets are presented for CF4 /O2/N2/H2, for which 396 reactions and 52 species are reduced to 71 reactions and 26 species, and for pure O2, for which 45 reactions and 10 species are reduced to 34 reactions.
  • [1]
    Bartschat K and Kushner M J 2016 Proc. Nat. Acad. Sci. 113 7026
    [2]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [3]
    Yoon J S et al 2011 AIP Conf. Proc. 1344 197
    [4]
    Wakelam V et al 2015 Astrophys. J. Suppl. 217 20
    [5]
    Celiberto R et al 2016 Plasma Sources Sci. Technol. 25 033004
    [6]
    Pitchford L C et al 2017 Plasma Proc. Polymers 14 1600098
    [7]
    Tennyson J et al 2017 Plasma Sources Sci. Technol. 26 055014
    [8]
    Song M Y et al 2015 J. Phys. Chem. Ref. Data 44 023101
    [9]
    Song M Y et al 2017 J. Phys. Chem. Ref. Data 46 013106
    [10]
    Song M Y et al 2017 J. Phys. Chem. Ref. Data 46 043104
    [11]
    COMSOL Multiphyiscs Software, see www.comsol.com/ comsol-multiphysics
    [12]
    Holdship J et al 2018 Astrophys. J. 116 866
    [13]
    Markosyan A H et al 2014 Comp. Phys. Comms. 185 2697
    [14]
    Kokkoris M et al 2008 J. Phys. D: Appl. Phys. 41 195211
    [15]
    Kokkoris G et al 2009 J. Phys. D: Appl. Phys. 42 055209
    [16]
    Turner M M 2016 Plasma Sources Sci. Technol. 25 015003
    [17]
    Lam S H 1995 Reduced chemistry modelling and sensitivity analysis Mechanical and Aerospace Engineering, Princeton University, Phys. 42 055209 (https://researchgate.net/ publication/2504582_Reduced_Chemistry_Modeling_and_ Sensitivity_Analysis)
    [18]
    Fracassi F et al 1995 J. Vac. Sci. Technol. A 13 335
    [19]
    Matsuo P J et al 1997 J. Vac. Sci. Technol. A 15 1801
    [20]
    Premachandran V 1990 Appl. Phys. Letts. 57 678
    [21]
    Christophorou L G, Olthoff J K and Rao M V V S 1996 J. Phys. Chem. Ref. Data 25 1341
    [22]
    Song S H and Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028
    [23]
    Hayash M 1979 J. Phys. Colloques 40 661
    [24]
    Phelps A V 1975 Compilation of Electron Cross Sections (unpublished)
    [25]
    Hayashi M 1990 Electron collision cross-sections determined from beam and swarm data by Boltzmann analysis ed M Capitelli and J N Bardsley Nonequilibrium Processes in Partially Ionized Gases vol 1990 (New York: Springer) p 333
    [26]
    Stief L J 1970 J. Chem. Phys. 52 4841
    [27]
    Bonham R A 1994 Jpn. J. Appl. Phys. 33 4157
    [28]
    Vasenkov A V et al 2004 J. Vac. Sci. Technol. A 22 511
    [29]
    Bose D et al 2003 Plasma Sources Sci. Technol. 12 225
    [30]
    Yang W et al 2018 Plasma Sources Sci. Technol. 27 075006
    [31]
    Brian J and Mitchell A 1990 Phys. Rep. 186 215
    [32]
    Itikawa Y 2009 J. Phys. Chem. Ref. Data 38 1
    [33]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
    [34]
    Turner M M 2015 Plasma Sources Sci. Technol. 24 035027
    [35]
    Peerenboom K et al 2015 Plasma Sources Sci. Technol. 24 025004
  • Related Articles

    [1]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [4]Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6
    [5]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [6]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [7]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [8]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [9]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [10]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
  • Cited by

    Periodical cited type(17)

    1. Mikeš, J., Pekárek, S., Hanuš, O. Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. Electrochemistry Communications, 2025. DOI:10.1016/j.elecom.2025.107873
    2. Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c
    3. Ali, N.N., Alayan, H.M., AbdulRazak, A.A. et al. Modeling and optimizing phenol degradation in aqueous solution using post discharge DBD plasma treatment. Desalination and Water Treatment, 2025. DOI:10.1016/j.dwt.2025.100993
    4. Haosheng, J., Shiyun, L., Hengrui, L. et al. Discharge Characteristics of DBD with Contact Electrodes at Atmospheric Pressure in Quiescent Air. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7405-4_28
    5. Giotis, K., Svarnas, P., Amanatides, E. et al. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode. Plasma Science and Technology, 2023, 25(11): 115402. DOI:10.1088/2058-6272/acdb52
    6. Tański, M., Reza, A., Przytuła, D. et al. Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences (Switzerland), 2023, 13(12): 7001. DOI:10.3390/app13127001
    7. Mikeš, J., Soukup, I., Pekárek, S. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics, 2023, 11(4): 1025. DOI:10.3390/math11041025
    8. Mikeš, J., Pekárek, S., Hanuš, O. Surface Dielectric Barrier Discharge in a Cylindrical Configuration–Effect of Airflow Orientation to the Microdischarges. Ozone: Science and Engineering, 2023, 45(1): 2-18. DOI:10.1080/01919512.2021.2016369
    9. Zhao, Q., Mao, B., Bai, X. et al. Experimental investigation of the discharge and thermal characteristics of an alternating current dielectric-barrier discharge plasma reactor. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.119276
    10. Xu, H., Zhu, F., Liu, Y. et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge. Plasma Sources Science and Technology, 2022, 31(11): 115010. DOI:10.1088/1361-6595/ac9d63
    11. Huang, L., Guo, L., Qi, Y. et al. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas, 2021, 28(12): 123501. DOI:10.1063/5.0068094
    12. ZENG, X., ZHANG, Y., GUO, L. et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Science and Technology, 2021, 23(8): 085501. DOI:10.1088/2058-6272/ac0244
    13. Pekárek, S., Mikeš, J., Červenka, M. et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. Plasma Chemistry and Plasma Processing, 2021, 41(3): 779-792. DOI:10.1007/s11090-021-10154-x
    14. Xi, W., Wang, W., Liu, Z. et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Science and Technology, 2020, 29(9): 095013. DOI:10.1088/1361-6595/aba7ef
    15. Homola, T., Prukner, V., Hoffer, P. et al. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sources Science and Technology, 2020, 29(9): 095014. DOI:10.1088/1361-6595/aba987
    16. Yuan, D., Zhang, G., Ling, Z. et al. Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109351
    17. Mikheyev, P.A., Demyanov, A.V., Kochetov, I.V. et al. Ozone and oxygen atoms production in a dielectric barrier discharge in pure oxygen and O2/CH4 mixtures. Modeling and experiment. Plasma Sources Science and Technology, 2020, 29(1): 015012. DOI:10.1088/1361-6595/ab5da3

    Other cited types(0)

Catalog

    Article views (321) PDF downloads (562) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return