Citation: | Adetokunbo AYILARAN, Martin HANICINEC, Sebastian MOHR, Jonathan TENNYSON. Reduced chemistries with the Quantemol database (QDB)[J]. Plasma Science and Technology, 2019, 21(6): 64006-064006. DOI: 10.1088/2058-6272/ab00a1 |
[1] |
Bartschat K and Kushner M J 2016 Proc. Nat. Acad. Sci. 113 7026
|
[2] |
Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
|
[3] |
Yoon J S et al 2011 AIP Conf. Proc. 1344 197
|
[4] |
Wakelam V et al 2015 Astrophys. J. Suppl. 217 20
|
[5] |
Celiberto R et al 2016 Plasma Sources Sci. Technol. 25 033004
|
[6] |
Pitchford L C et al 2017 Plasma Proc. Polymers 14 1600098
|
[7] |
Tennyson J et al 2017 Plasma Sources Sci. Technol. 26 055014
|
[8] |
Song M Y et al 2015 J. Phys. Chem. Ref. Data 44 023101
|
[9] |
Song M Y et al 2017 J. Phys. Chem. Ref. Data 46 013106
|
[10] |
Song M Y et al 2017 J. Phys. Chem. Ref. Data 46 043104
|
[11] |
COMSOL Multiphyiscs Software, see www.comsol.com/ comsol-multiphysics
|
[12] |
Holdship J et al 2018 Astrophys. J. 116 866
|
[13] |
Markosyan A H et al 2014 Comp. Phys. Comms. 185 2697
|
[14] |
Kokkoris M et al 2008 J. Phys. D: Appl. Phys. 41 195211
|
[15] |
Kokkoris G et al 2009 J. Phys. D: Appl. Phys. 42 055209
|
[16] |
Turner M M 2016 Plasma Sources Sci. Technol. 25 015003
|
[17] |
Lam S H 1995 Reduced chemistry modelling and sensitivity analysis Mechanical and Aerospace Engineering, Princeton University, Phys. 42 055209 (https://researchgate.net/ publication/2504582_Reduced_Chemistry_Modeling_and_ Sensitivity_Analysis)
|
[18] |
Fracassi F et al 1995 J. Vac. Sci. Technol. A 13 335
|
[19] |
Matsuo P J et al 1997 J. Vac. Sci. Technol. A 15 1801
|
[20] |
Premachandran V 1990 Appl. Phys. Letts. 57 678
|
[21] |
Christophorou L G, Olthoff J K and Rao M V V S 1996 J. Phys. Chem. Ref. Data 25 1341
|
[22] |
Song S H and Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028
|
[23] |
Hayash M 1979 J. Phys. Colloques 40 661
|
[24] |
Phelps A V 1975 Compilation of Electron Cross Sections (unpublished)
|
[25] |
Hayashi M 1990 Electron collision cross-sections determined from beam and swarm data by Boltzmann analysis ed M Capitelli and J N Bardsley Nonequilibrium Processes in Partially Ionized Gases vol 1990 (New York: Springer) p 333
|
[26] |
Stief L J 1970 J. Chem. Phys. 52 4841
|
[27] |
Bonham R A 1994 Jpn. J. Appl. Phys. 33 4157
|
[28] |
Vasenkov A V et al 2004 J. Vac. Sci. Technol. A 22 511
|
[29] |
Bose D et al 2003 Plasma Sources Sci. Technol. 12 225
|
[30] |
Yang W et al 2018 Plasma Sources Sci. Technol. 27 075006
|
[31] |
Brian J and Mitchell A 1990 Phys. Rep. 186 215
|
[32] |
Itikawa Y 2009 J. Phys. Chem. Ref. Data 38 1
|
[33] |
Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
|
[34] |
Turner M M 2015 Plasma Sources Sci. Technol. 24 035027
|
[35] |
Peerenboom K et al 2015 Plasma Sources Sci. Technol. 24 025004
|
[1] | Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65 |
[2] | Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6 |
[3] | Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203 |
[4] | Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6 |
[5] | Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5 |
[6] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[7] | ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09 |
[8] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[9] | QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13 |
[10] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
1. | Mikeš, J., Pekárek, S., Hanuš, O. Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. Electrochemistry Communications, 2025. DOI:10.1016/j.elecom.2025.107873 |
2. | Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c |
3. | Ali, N.N., Alayan, H.M., AbdulRazak, A.A. et al. Modeling and optimizing phenol degradation in aqueous solution using post discharge DBD plasma treatment. Desalination and Water Treatment, 2025. DOI:10.1016/j.dwt.2025.100993 |
4. | Haosheng, J., Shiyun, L., Hengrui, L. et al. Discharge Characteristics of DBD with Contact Electrodes at Atmospheric Pressure in Quiescent Air. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7405-4_28 |
5. | Giotis, K., Svarnas, P., Amanatides, E. et al. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode. Plasma Science and Technology, 2023, 25(11): 115402. DOI:10.1088/2058-6272/acdb52 |
6. | Tański, M., Reza, A., Przytuła, D. et al. Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences (Switzerland), 2023, 13(12): 7001. DOI:10.3390/app13127001 |
7. | Mikeš, J., Soukup, I., Pekárek, S. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics, 2023, 11(4): 1025. DOI:10.3390/math11041025 |
8. | Mikeš, J., Pekárek, S., Hanuš, O. Surface Dielectric Barrier Discharge in a Cylindrical Configuration–Effect of Airflow Orientation to the Microdischarges. Ozone: Science and Engineering, 2023, 45(1): 2-18. DOI:10.1080/01919512.2021.2016369 |
9. | Zhao, Q., Mao, B., Bai, X. et al. Experimental investigation of the discharge and thermal characteristics of an alternating current dielectric-barrier discharge plasma reactor. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.119276 |
10. | Xu, H., Zhu, F., Liu, Y. et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge. Plasma Sources Science and Technology, 2022, 31(11): 115010. DOI:10.1088/1361-6595/ac9d63 |
11. | Huang, L., Guo, L., Qi, Y. et al. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas, 2021, 28(12): 123501. DOI:10.1063/5.0068094 |
12. | ZENG, X., ZHANG, Y., GUO, L. et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Science and Technology, 2021, 23(8): 085501. DOI:10.1088/2058-6272/ac0244 |
13. | Pekárek, S., Mikeš, J., Červenka, M. et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. Plasma Chemistry and Plasma Processing, 2021, 41(3): 779-792. DOI:10.1007/s11090-021-10154-x |
14. | Xi, W., Wang, W., Liu, Z. et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Science and Technology, 2020, 29(9): 095013. DOI:10.1088/1361-6595/aba7ef |
15. | Homola, T., Prukner, V., Hoffer, P. et al. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sources Science and Technology, 2020, 29(9): 095014. DOI:10.1088/1361-6595/aba987 |
16. | Yuan, D., Zhang, G., Ling, Z. et al. Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109351 |
17. | Mikheyev, P.A., Demyanov, A.V., Kochetov, I.V. et al. Ozone and oxygen atoms production in a dielectric barrier discharge in pure oxygen and O2/CH4 mixtures. Modeling and experiment. Plasma Sources Science and Technology, 2020, 29(1): 015012. DOI:10.1088/1361-6595/ab5da3 |