Advanced Search+
Wei WEI (韦维), Xiaojie WANG (王晓洁), Miaohui LI (李妙辉), Bojiang DING (丁伯江). Evaluation of electron cyclotron current drive performance for CFETR[J]. Plasma Science and Technology, 2019, 21(6): 65101-065101. DOI: 10.1088/2058-6272/ab0841
Citation: Wei WEI (韦维), Xiaojie WANG (王晓洁), Miaohui LI (李妙辉), Bojiang DING (丁伯江). Evaluation of electron cyclotron current drive performance for CFETR[J]. Plasma Science and Technology, 2019, 21(6): 65101-065101. DOI: 10.1088/2058-6272/ab0841

Evaluation of electron cyclotron current drive performance for CFETR

Funds: This work is supported by National Key R&D Program of China (Nos. 2016YFA0400600, 2016YFA0400602, 2016YFA0400603, 2017YFE0300500 and 2017YFE0300503), the National Magnetic Confinement Fusion Science Program of China (No. 2015GB102003), and the National Natural Science Foundation of China (Nos. 11675214, 11775259).
More Information
  • Received Date: September 02, 2018
  • A number of simulations of electron cyclotron current drive (ECCD) have been carried out for the China Fusion Engineering Test Reactor (CFETR) using the C3PO/LUKE code to investigate the performance and optimize schemes of power injection for the design of the launcher. The operation ranges of the toroidal field, cutoff density, and resonance layer location are given at different source frequencies in CFETR phases I and II. A comparison of ECCD performance between the horizontal and top port launch is presented. ECCD efficiency (rEC) estimated for CFETR phase I is rEC=0.21 for top port launch and rEC=0.20 for horizontal port launch. The ECCD efficiency and second-harmonic absorption is calculated at different wave frequencies (from 170 to 230 GHz) in CFETR phase II. It is found that the highest driven efficiency is obtained at 210 GHz with the toroidal field of 6.5 T, and the second-harmonic absorption increases rapidly with the increase of frequency.
  • [1]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [2]
    Chen J L et al 2017 Plasma Phys. Control. Fusion 59 075005
    [3]
    Shi N et al 2016 Fusion Eng. Des. 112 47
    [4]
    Chan V S et al 2015 Nucl. Fusion 55 023017
    [5]
    Figini L et al 2015 Plasma Phys. Control. Fusion 57 054015
    [6]
    Farina D et al 2014 Phys. Plasmas 21 061504
    [7]
    Farina D et al 2012 Nucl. Fusion 52 033005
    [8]
    La Haye R J, Isayama A and Maraschek M 2009 Nucl. Fusion 49 045005
    [9]
    Wenninger R et al 2015 Nucl. Fusion 55 063003
    [10]
    Shi B R 1999 Magnetic Confinement Fusion (Beijing: Atomic Energy Press) (in Chinese)
    [11]
    Decker J and Peysson Y 2004 DKE: a Fast Numerical Solver for the 3D Relativistic Bounce-Averaged Electron Drift Kinetic Equation EUR-CEA-FC-1736 (Cambridge, MA: Plasma Science and Fusion Center)
    [12]
    Karney C F F 1986 Comput. Phys. Rep. 4 183
    [13]
    Petty C C et al 2003 Nucl. Fusion 43 700
    [14]
    Poli E et al 2013 Nucl. Fusion 53 013011
    [15]
    Ramponi G et al 2008 Nucl. Fusion 48 054012
    [16]
    Garcia J et al 2008 Nucl. Fusion 48 075007
    [17]
    Garofalo A M et al 2014 Nucl. Fusion 54 073015
    [18]
    Erckmann V and Gasparino U 1994 Plasma Phys. Control. Fusion 36 1869
    [19]
    Nowak S et al 2014 Nucl. Fusion 54 033003
    [20]
    Lu W et al 2013 Chin. Phys. Lett. 30 065203
    [21]
    Maraschek M 2012 Nucl. Fusion 52 074007
    [22]
    Wehner W and Schuster E 2012 Nucl. Fusion 52 074003
    [23]
    Mikkelsen D R et al 2018 Nucl. Fusion 58 036014
    [24]
    Wei W et al 2014 Chin. Phys. B 23 055201
    [25]
    Wei W et al 2016 Chin. Phys. B 25 015201
  • Related Articles

    [1]Yuan YAO, Yao YANG, Ang TI, Yang SONG, Jiamin ZHANG, Yan WANG, Yao ZHANG, Haiqing LIU, Yinxian JIE. A fringe jump counting method for the phase measurement in the HCN laser interferometer on EAST and its FPGA-based implementation[J]. Plasma Science and Technology, 2024, 26(4): 045601. DOI: 10.1088/2058-6272/ad0dec
    [2]Haojie MA, Huasheng XIE, Bo LI. Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations[J]. Plasma Science and Technology, 2024, 26(2): 025105. DOI: 10.1088/2058-6272/ad0d53
    [3]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [4]Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
    [5]CHANG Pengxiang (常鹏翔), WU Bin (吴斌), WANG Jinfang (王进芳), LI Yingying (李颖颖), WANG Xiaoguang (王小光), XU Handong (徐旵东), WANG Xiaojie (王晓洁), LIU Yong (刘永), ZHAO Hailin (赵海林), HAO Baolong (郝宝龙), YANG Zhen (杨振), ZHENG Ting (郑婷), HU Chundong (胡纯栋). The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST[J]. Plasma Science and Technology, 2016, 18(11): 1064-1068. DOI: 10.1088/1009-0630/18/11/02
    [6]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [7]PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22
    [8]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
    [9]YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315.
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.
  • Cited by

    Periodical cited type(1)

    1. Zhang, Y., Onchi, T., Nakamura, K. et al. A versatile power supply system for the central solenoid of the QUEST spherical tokamak. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113648
    1. Zhang, Y., Onchi, T., Nakamura, K. et al. A versatile power supply system for the central solenoid of the QUEST spherical tokamak. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113648

    Other cited types(0)

Catalog

    Article views (120) PDF downloads (149) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return