Advanced Search+
Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
Citation: Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f

Humidity effects on the ground-level resultant electric field of positive DC conductors

Funds: This work was supported by National Key Research and Development Program of China Grant No. 2016YFB0900800, Fok Ying-Tong Education Foundation China Grant No. 151058, the State Key Laboratory of Advanced Power Transmission Technology Grant No. GEIRI-SKL-2018-014, the Fundamental Research Funds for the Central Universities Grant No. 2019MS011 and Young Elite Scientists Sponsership Program by CAST Grant No. 2016QNRC001.
More Information
  • Received Date: November 06, 2018
  • The effects of humidity on the ground-level resultant electric field around positive DC conductors were studied both experimentally and numerically. Experiments were carried out in an artificial climate chamber, the results of which showed that the photon count and the groundlevel resultant electric field strength both increased with increasing relative humidity. Numerical calculations for different values of relative humidity were carried out, including solutions of the positive corona inception voltage and the ion-flow field, for which a photoionization model and the upstream finite element method were employed, respectively. In order to analyze the effects of humidity, three main factors were considered: the ionization coefficient, the attachment coefficient in the photoionization model and the modified ion mobility of the charged water particles. The results indicated that, with increasing relative humidity, increasing values of the effective ionization coefficient were responsible for a reduction in the inception voltage, and the reduction reinforced the ground-level resultant electric field. Moreover, due to the charged water particles and the lower ion mobility with increasing relative humidity, the space charge density distribution was enhanced, which also strengthened the ground-level resultant electric field.
  • [1]
    Bian X M et al 2018 High Volt. 3 126
    [2]
    Xu J Y et al 2018 Sci. China Technol. Sci. 61 1197
    [3]
    Li X B et al 2018 Plasma Sci. Technol. 20 054014
    [4]
    Liu Y P et al 2014 IEEE Trans. Power Deliv. 29 615
    [5]
    Bian X M et al 2018 Appl. Phys. Lett. 113 204102
    [6]
    Maruvada P S 2012 IEEE Trans. Power Deliv. 27 401
    [7]
    Maruvada P S 2011 Corona in Transmission Systems: Theory, Design, and Performance (Johannesburg, South Africa: Eskom Holdings) pp 92-8
    [8]
    Jin S et al 2016 Plasma Sci. Technol. 18 998
    [9]
    Maruvada P S 2014 IEEE Trans. Power Deliv. 29 2561
    [10]
    Peek F W 1929 Dielectric Phenomena in High Voltage Engineering (New York: McGraw-Hill Press)
    [11]
    Hartmann G 1984 IEEE Trans. Ind. Appl. 20 1647
    [12]
    Abdel-Salam M and Allen N L 2005 IEE Proc. Sci. Meas. Technol. 152 227
    [13]
    Lowke J J and D’Alessandro F 2003 J. Phys. D: Appl. Phys. 36 2673
    [14]
    Yamazaki K and Olsen R G 2004 IEEE Trans. Dielectr. Electr. Insul. 11 674
    [15]
    Bian X M et al 2010 IEEE Trans. Dielectr. Electr. Insul. 17 63
    [16]
    Ortéga P et al 2007 J. Phys. D: Appl. Phys. 40 7000
    [17]
    Wang W et al 2008 The effect of temperature and humidity on corona inception voltage gradient of UHV DC transmission line Proc. of 2008 Int. Conf. on Condition Monitoring and Diagnosis (Beijing, China: IEEE) 2008, p 816
    [18]
    Hu Q et al 2011 IET Gener. Transm. Distrib. 5 621
    [19]
    Xu M M, Tan Z Y and Li K J 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1377
    [20]
    Hu Q et al 2014 Int. Trans. Electr. Energy Syst. 24 723
    [21]
    Takuma T and Kawamoto T 1987 IEEE Trans. Power Deliv. 2 189
    [22]
    Zeng Y Z, Cui X and Lu T B 2014 Sci. China Technol. Sci. 57 747
    [23]
    Zhen Y Z et al 2011 Proceed. CSEE 31 120 (in Chinese)
    [24]
    Qiao J et al 2017 IET Gener. Transm. Distrib. 11 1055
    [25]
    Wang D L et al 2018 Plasma Sci. Technol. 20 054008
    [26]
    Zhou Y X et al 2018 Plasma Sci. Technol. 20 054016
    [27]
    Bian X M et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 809
    [28]
    Loeb L B 1965 Electrical Coronas: Their Basic Physical Mechanisms (Berkeley: University of California Press)
    [29]
    Zheng Y S, Zhang B and He J L 2015 Phys. Plasmas 22 063514
    [30]
    Yi Y et al 2017 IEEE Trans. Power Deliv. 32 2171
    [31]
    Morrow R and Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614
    [32]
    Abdel-Salam M 1985 IEEE Trans. Ind. Appl. IA-21 35
    [33]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [34]
    Maruvada P S 2000 Corona Performance of High-Voltage Transmission Lines (London, UK: Research Studies Press) pp 63-4
    [35]
    Zou Z L, Cui X and Lu T B 2016 CSEE J. Power Energy Syst. 2 88
    [36]
    Li Z H, Zhong L X and Yu X R 1992 Acta Geogr. Sin. 47 242 (in Chinese)
    [37]
    Lu T B et al 2007 IEEE Trans. Magn. 43 1221
  • Related Articles

    [1]Shijie HUANG, Yi LIU, Yong ZHAO, Youlai XU, Fuchang LIN, Hua LI, Qin ZHANG, Liuxia LI. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25(6): 065502. DOI: 10.1088/2058-6272/acb136
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [4]Huijuan WANG (王慧娟), Guangshun ZHOU (周广顺), He GUO (郭贺), Cong GENG (耿聪). Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process[J]. Plasma Science and Technology, 2017, 19(1): 15504-015504. DOI: 10.1088/1009-0630/19/1/015504
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]JIA Shenli (贾申利), LI Rui (李瑞), LIU Jianjun (刘建军), LI Xingwen (李兴文), et al.. The Plasma Channel Evolution Characteristics of Pulsed Flashlamps Working in an Array[J]. Plasma Science and Technology, 2013, 15(7): 640-643. DOI: 10.1088/1009-0630/15/7/07
    [7]U. N. PAL, Pooja GULATI, Ram PRAKASH, Mahesh KUMAR, V. SRIVASTAVA, S. KONAR. Analysis of Power in an Argon Filled Pulsed Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(7): 635-639. DOI: 10.1088/1009-0630/15/7/06
    [8]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [9]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08
    [10]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
  • Cited by

    Periodical cited type(2)

    1. Jang, I., Lee, J., Jeong, S. Real-Time Interface Prediction During Laser Processing of Thin Film Layers by High-Resolution Femtosecond Laser-Induced Breakdown Spectroscopy. International Journal of Precision Engineering and Manufacturing - Green Technology, 2025. DOI:10.1007/s40684-025-00715-2
    2. Zhao, D., Zhu, H., Zhang, Z. et al. Transparent superhydrophobic glass prepared by laser-induced plasma-assisted ablation on the surface. Journal of Materials Science, 2022. DOI:10.1007/s10853-022-07507-y

    Other cited types(0)

Catalog

    Article views (246) PDF downloads (538) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return