Advanced Search+
Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
Citation: Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f

Humidity effects on the ground-level resultant electric field of positive DC conductors

Funds: This work was supported by National Key Research and Development Program of China Grant No. 2016YFB0900800, Fok Ying-Tong Education Foundation China Grant No. 151058, the State Key Laboratory of Advanced Power Transmission Technology Grant No. GEIRI-SKL-2018-014, the Fundamental Research Funds for the Central Universities Grant No. 2019MS011 and Young Elite Scientists Sponsership Program by CAST Grant No. 2016QNRC001.
More Information
  • Received Date: November 06, 2018
  • The effects of humidity on the ground-level resultant electric field around positive DC conductors were studied both experimentally and numerically. Experiments were carried out in an artificial climate chamber, the results of which showed that the photon count and the groundlevel resultant electric field strength both increased with increasing relative humidity. Numerical calculations for different values of relative humidity were carried out, including solutions of the positive corona inception voltage and the ion-flow field, for which a photoionization model and the upstream finite element method were employed, respectively. In order to analyze the effects of humidity, three main factors were considered: the ionization coefficient, the attachment coefficient in the photoionization model and the modified ion mobility of the charged water particles. The results indicated that, with increasing relative humidity, increasing values of the effective ionization coefficient were responsible for a reduction in the inception voltage, and the reduction reinforced the ground-level resultant electric field. Moreover, due to the charged water particles and the lower ion mobility with increasing relative humidity, the space charge density distribution was enhanced, which also strengthened the ground-level resultant electric field.
  • [1]
    Bian X M et al 2018 High Volt. 3 126
    [2]
    Xu J Y et al 2018 Sci. China Technol. Sci. 61 1197
    [3]
    Li X B et al 2018 Plasma Sci. Technol. 20 054014
    [4]
    Liu Y P et al 2014 IEEE Trans. Power Deliv. 29 615
    [5]
    Bian X M et al 2018 Appl. Phys. Lett. 113 204102
    [6]
    Maruvada P S 2012 IEEE Trans. Power Deliv. 27 401
    [7]
    Maruvada P S 2011 Corona in Transmission Systems: Theory, Design, and Performance (Johannesburg, South Africa: Eskom Holdings) pp 92-8
    [8]
    Jin S et al 2016 Plasma Sci. Technol. 18 998
    [9]
    Maruvada P S 2014 IEEE Trans. Power Deliv. 29 2561
    [10]
    Peek F W 1929 Dielectric Phenomena in High Voltage Engineering (New York: McGraw-Hill Press)
    [11]
    Hartmann G 1984 IEEE Trans. Ind. Appl. 20 1647
    [12]
    Abdel-Salam M and Allen N L 2005 IEE Proc. Sci. Meas. Technol. 152 227
    [13]
    Lowke J J and D’Alessandro F 2003 J. Phys. D: Appl. Phys. 36 2673
    [14]
    Yamazaki K and Olsen R G 2004 IEEE Trans. Dielectr. Electr. Insul. 11 674
    [15]
    Bian X M et al 2010 IEEE Trans. Dielectr. Electr. Insul. 17 63
    [16]
    Ortéga P et al 2007 J. Phys. D: Appl. Phys. 40 7000
    [17]
    Wang W et al 2008 The effect of temperature and humidity on corona inception voltage gradient of UHV DC transmission line Proc. of 2008 Int. Conf. on Condition Monitoring and Diagnosis (Beijing, China: IEEE) 2008, p 816
    [18]
    Hu Q et al 2011 IET Gener. Transm. Distrib. 5 621
    [19]
    Xu M M, Tan Z Y and Li K J 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1377
    [20]
    Hu Q et al 2014 Int. Trans. Electr. Energy Syst. 24 723
    [21]
    Takuma T and Kawamoto T 1987 IEEE Trans. Power Deliv. 2 189
    [22]
    Zeng Y Z, Cui X and Lu T B 2014 Sci. China Technol. Sci. 57 747
    [23]
    Zhen Y Z et al 2011 Proceed. CSEE 31 120 (in Chinese)
    [24]
    Qiao J et al 2017 IET Gener. Transm. Distrib. 11 1055
    [25]
    Wang D L et al 2018 Plasma Sci. Technol. 20 054008
    [26]
    Zhou Y X et al 2018 Plasma Sci. Technol. 20 054016
    [27]
    Bian X M et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 809
    [28]
    Loeb L B 1965 Electrical Coronas: Their Basic Physical Mechanisms (Berkeley: University of California Press)
    [29]
    Zheng Y S, Zhang B and He J L 2015 Phys. Plasmas 22 063514
    [30]
    Yi Y et al 2017 IEEE Trans. Power Deliv. 32 2171
    [31]
    Morrow R and Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614
    [32]
    Abdel-Salam M 1985 IEEE Trans. Ind. Appl. IA-21 35
    [33]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [34]
    Maruvada P S 2000 Corona Performance of High-Voltage Transmission Lines (London, UK: Research Studies Press) pp 63-4
    [35]
    Zou Z L, Cui X and Lu T B 2016 CSEE J. Power Energy Syst. 2 88
    [36]
    Li Z H, Zhong L X and Yu X R 1992 Acta Geogr. Sin. 47 242 (in Chinese)
    [37]
    Lu T B et al 2007 IEEE Trans. Magn. 43 1221
  • Related Articles

    [1]Xiaojuan WANG, Zhanghu HU, Younian WANG. Multi-layer structure formation of relativistic electron beams in plasmas[J]. Plasma Science and Technology, 2022, 24(2): 025001. DOI: 10.1088/2058-6272/ac4155
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [4]Mohamed MOSTAFAOUI, Djilali BENYOUCEF. Electrical model parameters identification of radiofrequency discharge in argon through 1D3V/PIC-MC model[J]. Plasma Science and Technology, 2018, 20(9): 95401-095401. DOI: 10.1088/2058-6272/aac3cf
    [5]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [6]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [7]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [8]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [9]XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
    [10]HAO Xiwei, SONG Baipeng, ZHANG Guanjun. PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum[J]. Plasma Science and Technology, 2011, 13(6): 682-688.

Catalog

    Article views (247) PDF downloads (539) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return