Advanced Search+
Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
Citation: Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f

Humidity effects on the ground-level resultant electric field of positive DC conductors

Funds: This work was supported by National Key Research and Development Program of China Grant No. 2016YFB0900800, Fok Ying-Tong Education Foundation China Grant No. 151058, the State Key Laboratory of Advanced Power Transmission Technology Grant No. GEIRI-SKL-2018-014, the Fundamental Research Funds for the Central Universities Grant No. 2019MS011 and Young Elite Scientists Sponsership Program by CAST Grant No. 2016QNRC001.
More Information
  • Received Date: November 06, 2018
  • The effects of humidity on the ground-level resultant electric field around positive DC conductors were studied both experimentally and numerically. Experiments were carried out in an artificial climate chamber, the results of which showed that the photon count and the groundlevel resultant electric field strength both increased with increasing relative humidity. Numerical calculations for different values of relative humidity were carried out, including solutions of the positive corona inception voltage and the ion-flow field, for which a photoionization model and the upstream finite element method were employed, respectively. In order to analyze the effects of humidity, three main factors were considered: the ionization coefficient, the attachment coefficient in the photoionization model and the modified ion mobility of the charged water particles. The results indicated that, with increasing relative humidity, increasing values of the effective ionization coefficient were responsible for a reduction in the inception voltage, and the reduction reinforced the ground-level resultant electric field. Moreover, due to the charged water particles and the lower ion mobility with increasing relative humidity, the space charge density distribution was enhanced, which also strengthened the ground-level resultant electric field.
  • [1]
    Bian X M et al 2018 High Volt. 3 126
    [2]
    Xu J Y et al 2018 Sci. China Technol. Sci. 61 1197
    [3]
    Li X B et al 2018 Plasma Sci. Technol. 20 054014
    [4]
    Liu Y P et al 2014 IEEE Trans. Power Deliv. 29 615
    [5]
    Bian X M et al 2018 Appl. Phys. Lett. 113 204102
    [6]
    Maruvada P S 2012 IEEE Trans. Power Deliv. 27 401
    [7]
    Maruvada P S 2011 Corona in Transmission Systems: Theory, Design, and Performance (Johannesburg, South Africa: Eskom Holdings) pp 92-8
    [8]
    Jin S et al 2016 Plasma Sci. Technol. 18 998
    [9]
    Maruvada P S 2014 IEEE Trans. Power Deliv. 29 2561
    [10]
    Peek F W 1929 Dielectric Phenomena in High Voltage Engineering (New York: McGraw-Hill Press)
    [11]
    Hartmann G 1984 IEEE Trans. Ind. Appl. 20 1647
    [12]
    Abdel-Salam M and Allen N L 2005 IEE Proc. Sci. Meas. Technol. 152 227
    [13]
    Lowke J J and D’Alessandro F 2003 J. Phys. D: Appl. Phys. 36 2673
    [14]
    Yamazaki K and Olsen R G 2004 IEEE Trans. Dielectr. Electr. Insul. 11 674
    [15]
    Bian X M et al 2010 IEEE Trans. Dielectr. Electr. Insul. 17 63
    [16]
    Ortéga P et al 2007 J. Phys. D: Appl. Phys. 40 7000
    [17]
    Wang W et al 2008 The effect of temperature and humidity on corona inception voltage gradient of UHV DC transmission line Proc. of 2008 Int. Conf. on Condition Monitoring and Diagnosis (Beijing, China: IEEE) 2008, p 816
    [18]
    Hu Q et al 2011 IET Gener. Transm. Distrib. 5 621
    [19]
    Xu M M, Tan Z Y and Li K J 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1377
    [20]
    Hu Q et al 2014 Int. Trans. Electr. Energy Syst. 24 723
    [21]
    Takuma T and Kawamoto T 1987 IEEE Trans. Power Deliv. 2 189
    [22]
    Zeng Y Z, Cui X and Lu T B 2014 Sci. China Technol. Sci. 57 747
    [23]
    Zhen Y Z et al 2011 Proceed. CSEE 31 120 (in Chinese)
    [24]
    Qiao J et al 2017 IET Gener. Transm. Distrib. 11 1055
    [25]
    Wang D L et al 2018 Plasma Sci. Technol. 20 054008
    [26]
    Zhou Y X et al 2018 Plasma Sci. Technol. 20 054016
    [27]
    Bian X M et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 809
    [28]
    Loeb L B 1965 Electrical Coronas: Their Basic Physical Mechanisms (Berkeley: University of California Press)
    [29]
    Zheng Y S, Zhang B and He J L 2015 Phys. Plasmas 22 063514
    [30]
    Yi Y et al 2017 IEEE Trans. Power Deliv. 32 2171
    [31]
    Morrow R and Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614
    [32]
    Abdel-Salam M 1985 IEEE Trans. Ind. Appl. IA-21 35
    [33]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [34]
    Maruvada P S 2000 Corona Performance of High-Voltage Transmission Lines (London, UK: Research Studies Press) pp 63-4
    [35]
    Zou Z L, Cui X and Lu T B 2016 CSEE J. Power Energy Syst. 2 88
    [36]
    Li Z H, Zhong L X and Yu X R 1992 Acta Geogr. Sin. 47 242 (in Chinese)
    [37]
    Lu T B et al 2007 IEEE Trans. Magn. 43 1221
  • Cited by

    Periodical cited type(15)

    1. Pan, D., Wen, D., Guo, X. et al. Factors Influencing the Sterilization of E. coli in a High-Voltage Electric Field: Electric Field Strength, Temperature and Humidity. Processes, 2025, 13(2): 551. DOI:10.3390/pr13020551
    2. Ji, Y., Giangrande, P., Zhao, W. et al. Combined Effect of Short Rise Time and Relative Humidity on the Partial Discharge Inception Mechanism in Rotating Electrical Machines Insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2025, 32(1): 474-483. DOI:10.1109/TDEI.2024.3404835
    3. Wang, S., Mai, J., Wang, L. A Numerical Simulation Study on DC Positive Corona Discharge Characteristics at the Conductor’s Tip Defect. Applied Sciences (Switzerland), 2023, 13(18): 10472. DOI:10.3390/app131810472
    4. Li, M., Ma, Z., Xia, J. et al. Investigation of Humid Air on Corona Onset Voltage in Wire-Plane Electrodes Under AC-DC Composite Voltages via Test and Modeling. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(3): 1105-1114. DOI:10.1109/TDEI.2023.3248528
    5. Tian, P., Shan, Y., Liu, G. et al. Analysis of Temperature Sensitivity Parameters in Hydrodynamic Model of Streamer. IEEE Access, 2023. DOI:10.1109/ACCESS.2023.3273611
    6. Ma, Z., Xia, J., He, X. et al. Experimental and numerical study on corona onset threshold under combined AC-DC voltages in Wire-Plane electrodes. International Journal of Electrical Power and Energy Systems, 2022. DOI:10.1016/j.ijepes.2022.108479
    7. Shen, N., Su, Z., Zhang, Y. et al. Influence of Humidity on the Charge Characteristics of Suspension Droplets and the Characteristics of Ion Flow Field | [湿度对悬浮液滴荷电特性及离子流场特性的影响]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37(13): 3422-3430 and 3452. DOI:10.19595/j.cnki.1000-6753.tces.210624
    8. Shen, N., Su, Z., Zhang, Y. et al. The influence of charge characteristics of suspension droplets on the ion flow field in different temperatures and humidity. Plasma Science and Technology, 2022, 24(4): 044004. DOI:10.1088/2058-6272/ac5afb
    9. He, Z., Zhu, J., Zhu, J. et al. Experiments and analysis of corona inception voltage under combined AC-DC voltages at various air pressure and humidity in rod to plane electrodes. CSEE Journal of Power and Energy Systems, 2021, 7(4): 875-888. DOI:10.17775/CSEEJPES.2020.03780
    10. Yan, J., Liang, G., Lian, H. et al. Effect of plasma step gradient modification on surface electrical properties of epoxy resin. Plasma Science and Technology, 2021, 23(6): 064012. DOI:10.1088/2058-6272/abef55
    11. Hussain, K., Lu, T. Analysis of Environmental Temperature Effect on Positive and Negative Corona Discharge using Self-Consistent Plasma Model. 2021. DOI:10.1109/AEERO52475.2021.9708370
    12. Shen, N., Zhang, Y., Xu, P. et al. Calculation and Analysis of Ground-level Total Electric Field of HVDC Lines in Fog Based on Meteorological Data | [基于气象数据的雾天气条件下高压直流输电线路合成电场计算分析]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(23): 7805-7815. DOI:10.13334/j.0258-8013.pcsee.200725
    13. Lian, H., Yan, J., Xie, J. et al. Enhancement of surface insulation properties of alumina/epoxy composites through ZrO2 film sprayed by plasma atomization. Polymer Composites, 2020, 41(10): 4020-4030. DOI:10.1002/pc.25689
    14. Jie, Z., Zichen, H., Jiale, W. et al. Experimental studies on effects of surface morphologies on corona characteristics of conductors subjected to positive DC voltages. High Voltage, 2020, 5(4): 489-497. DOI:10.1049/hve.2019.0317
    15. Liu, S., Li, S., Jiang, Y. et al. Study on influencing factors of ion current density measurement in corona discharge of HVDC transmission lines. Plasma Science and Technology, 2020, 22(4): 044001. DOI:10.1088/2058-6272/ab571e

    Other cited types(0)

Catalog

    Article views (246) PDF downloads (538) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return