Advanced Search+
H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
Citation: H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3

Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source

Funds: This research was supported by the Korea Research Institute of Standard and Science (KRISS) and the R&D Convergence Program (1711062007, CAP-17–02-NFRI-01) of the National Research Council of Science and Technology (NST) of Republic of Korea.
More Information
  • Received Date: September 29, 2018
  • In this study, plasma density measurements were performed near the plume region of the remote plasma source (RPS) in Ar/ NF3 gas mixtures using a microwave cutoff probe. The measured plasma density is in the range of 10 10 –10 11 cm −3 in the discharge conditions with RPS powers of 2–4 kW and gas pressures of 0.87–4 Torr. The plasma density decreased with increasing gas pressures and RPS powers under various Ar/ NF3 mixing ratios. This decrease in the plasma density measured at the fixed measurement position (plume region) can be understood by the reduction of the electron energy relaxation length with increases in the gas pressures and mixing ratio of NF3/(Ar / NF3). We also performed downstream etching of silicon and silicon oxide films in this system. The etch rate of the silicon films significantly increases while the silicon oxide is slightly etched with the gas pressures and powers. It was also found that the etch rate strongly depends on the wafer position on the processing chamber electrode, and that the etch selectivity reached 96–131 in the discharge conditions of RF powers (3730–4180 W) and gas pressures (3.6–4 Torr).
  • [1]
    Blain M G, Jarecki R L and Simonson R J 1998 J. Vac. Sci. Technol. A 16 2115
    [2]
    Nagata A et al 1989 Jpn. J. Appl. Phys. 28 2368
    [3]
    Kastenmeier B E E et al 1998 J. Vac. Sci. Technol. A 16 2047
    [4]
    Lee H C 2018 Appl. Phys. Rev. 5 011108
    [5]
    Godyak V 2013 J. Phys. D: Appl. Phys. 46 283001
    [6]
    Huang S et al 2018 J. Vac. Sci. Technol. A 36 021305
    [7]
    Kim J H et al 2003 Appl. Phys. Lett. 83 4725
    [8]
    You K H et al 2013 Thin Solid Films 547 250
    [9]
    Kim J H et al 2011 Metrologia 48 306
    [10]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken, NJ: Wiley)
    [11]
    Tsendin L D 2010 Phys. Usp. 53 133
    [12]
    Godyak V A and Piejak R B 1993 Appl. Phys. Lett. 63 3137
    [13]
    Lee H C, Lee M H and Chung C W 2010 Appl. Phys. Lett. 96 041503
    [14]
    Lee H C and Chung C W 2013 Phys. Plasmas 20 101607
    [15]
    Lee H C and Chung C W 2015 Phys. Plasmas 22 053505
    [16]
    Lee H C et al 2013 Phys. Plasmas 20 033504
    [17]
    Szmytkowski C et al 2004 Phys. Rev. A 70 032707
    [18]
    Lisovskiy V et al 2014 J. Phys. D: Appl. Phys. 47 115203
    [19]
    Rescigno T N 1995 Phys. Rev. A 52 329
    [20]
    Dyatko N A and Napartovich A P 1999 J. Phys. D: Appl. Phys. 32 3169
    [21]
    Surendra M, Graves D B and Jellum G M 1990 Phys. Rev. A 41 1112
    [22]
    Song M Y et al 2017 J. Phys. Chem. Ref. Data 46 043104
    [23]
    Hamilton J R et al 2017 Plasma Sources Sci. Technol. 26 065010
    [24]
    Lee H C et al 2011 Phys. Plasmas 18 023501
    [25]
    Gangoli S P et al 2007 J. Phys. D: Appl. Phys. 40 5140
    [26]
    Shuo H et al 2017 J. Vac. Sci. Technol. A 35 031302
    [27]
    Barsukov Y et al 2017 J. Vac. Sci. Technol. A 35 061310
    [28]
    Mogab C J, Adams A C and Flamm D L 1978 J. Appl. Phys. 49 3796
    [29]
    Manos D M and Flamm D L 1989 Plasma Etching: An Introduction (London: Academic)
  • Related Articles

    [1]Yuan YAO, Yao YANG, Ang TI, Yang SONG, Jiamin ZHANG, Yan WANG, Yao ZHANG, Haiqing LIU, Yinxian JIE. A fringe jump counting method for the phase measurement in the HCN laser interferometer on EAST and its FPGA-based implementation[J]. Plasma Science and Technology, 2024, 26(4): 045601. DOI: 10.1088/2058-6272/ad0dec
    [2]Haojie MA, Huasheng XIE, Bo LI. Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations[J]. Plasma Science and Technology, 2024, 26(2): 025105. DOI: 10.1088/2058-6272/ad0d53
    [3]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [4]Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
    [5]CHANG Pengxiang (常鹏翔), WU Bin (吴斌), WANG Jinfang (王进芳), LI Yingying (李颖颖), WANG Xiaoguang (王小光), XU Handong (徐旵东), WANG Xiaojie (王晓洁), LIU Yong (刘永), ZHAO Hailin (赵海林), HAO Baolong (郝宝龙), YANG Zhen (杨振), ZHENG Ting (郑婷), HU Chundong (胡纯栋). The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST[J]. Plasma Science and Technology, 2016, 18(11): 1064-1068. DOI: 10.1088/1009-0630/18/11/02
    [6]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [7]PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22
    [8]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
    [9]YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315.
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.
  • Cited by

    Periodical cited type(1)

    1. Zhang, Y., Onchi, T., Nakamura, K. et al. A versatile power supply system for the central solenoid of the QUEST spherical tokamak. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113648
    1. Zhang, Y., Onchi, T., Nakamura, K. et al. A versatile power supply system for the central solenoid of the QUEST spherical tokamak. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113648

    Other cited types(0)

Catalog

    Article views (216) PDF downloads (947) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return