Advanced Search+
Jiao PENG (彭姣), Rong YAN (鄢容), Junling CHEN (陈俊凌), Rui DING (丁锐), Yingying LI (李颖颖), Fali CHONG (种法力). Study on plasma cleaning of the large-scale first mirror of the charge exchange recombination spectroscopy diagnostic on EAST[J]. Plasma Science and Technology, 2020, 22(3): 34004-034004. DOI: 10.1088/2058-6272/ab54d3
Citation: Jiao PENG (彭姣), Rong YAN (鄢容), Junling CHEN (陈俊凌), Rui DING (丁锐), Yingying LI (李颖颖), Fali CHONG (种法力). Study on plasma cleaning of the large-scale first mirror of the charge exchange recombination spectroscopy diagnostic on EAST[J]. Plasma Science and Technology, 2020, 22(3): 34004-034004. DOI: 10.1088/2058-6272/ab54d3

Study on plasma cleaning of the large-scale first mirror of the charge exchange recombination spectroscopy diagnostic on EAST

Funds: This work is subsidized by National Natural Science Foundation of China (Nos. 11975269, 11905252, 11675218, 11675219, 11775260, 11861131010, 11875230) and the National Key R&D Program of China (Nos. 2017YFA0402500 and 2017YFE0301300).
More Information
  • Received Date: September 07, 2019
  • Revised Date: November 04, 2019
  • Accepted Date: November 05, 2019
  • In the Experimental Advanced Superconducting Tokamak (EAST), the reflectivity of the charge exchange recombination spectroscopy (CXRS) first mirror (FM) was dramatically dropped down to 20% of the original value after the operation of two EAST experimental campaigns from 2014–2015, leading to degradation of the signal intensity of the CXRS diagnostic to an unacceptably low level. The radio frequency (RF) plasma cleaning of the CXRS FM with a dimension of 303 × 81 × 76 mm3 and a small curvature of 0.008 mm–1 was performed to remove deposits to recover the reflectivity. After 168 h cleaning by RF plasma, the maximum specular reflectivity of the FM could reach 92% of the original value at 532 nm, making the cleaned CXRS FM eligible to be reused for the CXRS diagnostic in the 2016 EAST campaign. Dedicated tests of sputtering polished mirror samples were performed to explore the cleaning uniformity and possible damage to the mirror surface. The specular reflectivity did not show obvious dependence on locations along the surface with the same cleaning time. The measured surface roughness gradually increased with sputtering time. The reflectivity remained almost unchanged regardless of different sputtering times and locations, indicating negligible damage to the FM surface even after 100 h sputtering. The recontaminated CXRS FM in the 2016 EAST campaign was firstly cleaned for 81 h, and the least reflectivity recovery for areas with relatively thick deposits was only 40%. After continuing cleaning to 147 h, redeposition of the sputtered residual deposits on the FM surface was observed. In the future for in situ cleaning of the FMs in EAST and ITER, deposits should be removed timely when they are very thin taking into account a very long cleaning time and presumable redeposition of thick and nonuniform deposits.
  • [1]
    Donné A J H et al 2007 Nucl. Fusion 47 S337
    [2]
    Litnovsky A et al 2009 Nucl. Fusion 49 075014
    [3]
    Litnovsky A et al 2007 Fusion Eng. Des. 82 123
    [4]
    Litnovsky A et al 2017 Fusion Eng. Des. 123 674
    [5]
    Voitsenya V et al 2001 Rev. Sci. Instrum. 72 475
    [6]
    Kotov V et al 2011 Fusion Eng. Des. 86 1583
    [7]
    Litnovsky A et al 2011 Fusion Eng. Des. 86 1780
    [8]
    Razdobarin A G et al 2015 Nucl. Fusion 55 093022
    [9]
    Guo H Y et al 2014 Nucl. Fusion 54 013002
    [10]
    Lan T et al 2015 J. Instrum. 10 C12017
    [11]
    Li Y Y et al 2014 Rev. Sci. Instrum. 85 11E428
    [12]
    Widdowson A et al 2011 J. Nucl. Mater. 415 S1199
    [13]
    Skinner C H et al 2013 Fusion Sci. Technol. 64 1
    [14]
    Maffini A et al 2016 Nucl. Fusion 56 086008
    [15]
    Moser L et al 2017 Phys. Scr. 2017 014047
    [16]
    Marot L et al 2017 Nucl. Mater. Energy 12 605
    [17]
    Soni K et al 2019 Nucl. Mater. Energy 21 100702
    [18]
    Maffini A et al 2017 Nucl. Fusion 57 046014
    [19]
    Litnovsky A et al 2019 Nucl. Fusion 59 066029
    [20]
    Arkhipov I et al 2011 J. Nucl. Mater. 415 S1210
    [21]
    Litnovsky A et al 2015 Nucl. Fusion 55 093015
    [22]
    Zhou Y et al 2011 J. Nucl. Mater. 415 S1206
    [23]
    Yan R et al 2015 J. Nucl. Mater. 463 948
    [24]
    Moser L et al 2015 Nucl. Fusion 55 063020
    [25]
    Leipold F et al 2016 Rev. Sci. Instrum. 87 11D439
    [26]
    Yan R et al 2018 Nucl. Fusion 58 026008
    [27]
    Ushakov A et al 2019 Fusion Eng. Des. 146 1559
    [28]
    Yan R et al 2019 IEEE Trans. Plasma Sci. 47 1769
    [29]
    Peng J et al 2017 Plasma Sci. Technol. 19 105601
    [30]
    Peng J et al 2016 Fusion Eng. Des. 112 317
    [31]
    Dmitriev A et al 2017 Phys. Scr. T170 014072
    [32]
    Miziolek A W, Palleschi V and Schechter I 2006 Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge: Cambridge University Press)
  • Related Articles

    [1]Li YANG, Sishu WANG, Andong WU, Bo CHEN, Jianjun CHEN, Hongbin WANG, Shuwei CHEN, Jianjun WEI, Kun ZHANG, Zongbiao YE, Fujun GOU. Cleaning of nitrogen-containing carbon contamination by atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2022, 24(10): 105505. DOI: 10.1088/2058-6272/ac6dc5
    [2]Yuhai LI, Qingshun BAI, Yuheng GUAN, Hao LIU, Peng ZHANG, Buerlike BATELIBIEKE, Rongqi SHEN, Lihua LU, Xiaodong YUAN, Xinxiang MIAO, Wei HAN, Caizhen YAO. The mechanism study of low-pressure air plasma cleaning on large-aperture optical surface unraveled by experiment and reactive molecular dynamics simulation[J]. Plasma Science and Technology, 2022, 24(6): 064012. DOI: 10.1088/2058-6272/ac69b6
    [3]Jiao PENG (彭姣), Rong YAN (鄢容), Rui DING (丁锐), Junling CHEN (陈俊凌), Dahuan ZHU (朱大焕), Zengming ZHANG (张增明). Repetitive cleaning of a stainless steel first mirror using radio frequency plasma[J]. Plasma Science and Technology, 2017, 19(10): 105601. DOI: 10.1088/2058-6272/aa7629
    [4]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12
    [5]YAN Rong (鄢容), CHEN Junling (陈俊凌), CHEN Longwei (陈龙威), et al.. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2014, 16(12): 1158-1162. DOI: 10.1088/1009-0630/16/12/13
    [6]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良), et al.. Atmospheric Pressure Plasma Jet in Ar and O 2 /Ar Mixtures: Properties and High Performance for Surface Cleaning[J]. Plasma Science and Technology, 2013, 15(12): 1203-1208. DOI: 10.1088/1009-0630/15/12/08
    [7]Constantine L. XAPLANTERIS, Eleni D. FILIPPAKI. Influence of an External DC Electric Current on Plasma Cleaning Rate: an Application on the Enlarged Plasma-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 448-454. DOI: 10.1088/1009-0630/15/5/11
    [8]YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315.
    [9]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.
    [10]ZUO Guizhong, HU Jiansheng, LI Jiangang, LUO Nanchang, HU Liqun, FU Jia, CHEN Kaiyun, TI Ang, ZHANG Lili. Primary Results of Lithium Coating for the Improvement of Plasma Performance in EAST[J]. Plasma Science and Technology, 2010, 12(6): 646-650.
  • Cited by

    Periodical cited type(7)

    1. Bao, L., Chen, H., Hu, M. et al. Removal of nitric oxide from gas streams by droplet triggered gas discharge. Chemical Engineering and Processing - Process Intensification, 2025. DOI:10.1016/j.cep.2025.110260
    2. Zhang, J., Dang, M., Luo, C. et al. Surface Analysis of Stainless Steel Electrodes Cleaned by Atmospheric Pressure Plasma. Materials, 2024, 17(14): 3621. DOI:10.3390/ma17143621
    3. Wang, X., He, H., Jiang, X. et al. Study on the treatment of oily wastewater with non equilibrium plasma synergistic catalysts. Journal of Dispersion Science and Technology, 2024. DOI:10.1080/01932691.2024.2333512
    4. Su, S., Xi, Y., Dai, Y. et al. Motion characteristics and residence time of particles in the new cross structure under constant-pulse condition. Numerical Heat Transfer; Part A: Applications, 2024, 85(4): 467-490. DOI:10.1080/10407782.2023.2202884
    5. Park, J.Y., Baek, K.H., Kim, S.-J. et al. Development of high durability plasma filter for air circulating disinfection system. Current Applied Physics, 2022. DOI:10.1016/j.cap.2022.06.017
    6. Jiang, Y., Peng, B., Liu, Z. et al. Characteristic studies on positive and negative streamers of double-sided pulsed surface dielectric barrier discharge. Plasma Science and Technology, 2022, 24(4): 044005. DOI:10.1088/2058-6272/ac58ed
    7. Zhang, L., Ou, C., Magana-Arachchi, D. et al. Indoor particulate matter in urban households: Sources, pathways, characteristics, health effects, and exposure mitigation. International Journal of Environmental Research and Public Health, 2021, 18(21): 11055. DOI:10.3390/ijerph182111055

    Other cited types(0)

Catalog

    Article views (297) PDF downloads (153) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return