Advanced Search+
Jiao PENG (彭姣), Rong YAN (鄢容), Junling CHEN (陈俊凌), Rui DING (丁锐), Yingying LI (李颖颖), Fali CHONG (种法力). Study on plasma cleaning of the large-scale first mirror of the charge exchange recombination spectroscopy diagnostic on EAST[J]. Plasma Science and Technology, 2020, 22(3): 34004-034004. DOI: 10.1088/2058-6272/ab54d3
Citation: Jiao PENG (彭姣), Rong YAN (鄢容), Junling CHEN (陈俊凌), Rui DING (丁锐), Yingying LI (李颖颖), Fali CHONG (种法力). Study on plasma cleaning of the large-scale first mirror of the charge exchange recombination spectroscopy diagnostic on EAST[J]. Plasma Science and Technology, 2020, 22(3): 34004-034004. DOI: 10.1088/2058-6272/ab54d3

Study on plasma cleaning of the large-scale first mirror of the charge exchange recombination spectroscopy diagnostic on EAST

Funds: This work is subsidized by National Natural Science Foundation of China (Nos. 11975269, 11905252, 11675218, 11675219, 11775260, 11861131010, 11875230) and the National Key R&D Program of China (Nos. 2017YFA0402500 and 2017YFE0301300).
More Information
  • Received Date: September 07, 2019
  • Revised Date: November 04, 2019
  • Accepted Date: November 05, 2019
  • In the Experimental Advanced Superconducting Tokamak (EAST), the reflectivity of the charge exchange recombination spectroscopy (CXRS) first mirror (FM) was dramatically dropped down to 20% of the original value after the operation of two EAST experimental campaigns from 2014–2015, leading to degradation of the signal intensity of the CXRS diagnostic to an unacceptably low level. The radio frequency (RF) plasma cleaning of the CXRS FM with a dimension of 303 × 81 × 76 mm3 and a small curvature of 0.008 mm–1 was performed to remove deposits to recover the reflectivity. After 168 h cleaning by RF plasma, the maximum specular reflectivity of the FM could reach 92% of the original value at 532 nm, making the cleaned CXRS FM eligible to be reused for the CXRS diagnostic in the 2016 EAST campaign. Dedicated tests of sputtering polished mirror samples were performed to explore the cleaning uniformity and possible damage to the mirror surface. The specular reflectivity did not show obvious dependence on locations along the surface with the same cleaning time. The measured surface roughness gradually increased with sputtering time. The reflectivity remained almost unchanged regardless of different sputtering times and locations, indicating negligible damage to the FM surface even after 100 h sputtering. The recontaminated CXRS FM in the 2016 EAST campaign was firstly cleaned for 81 h, and the least reflectivity recovery for areas with relatively thick deposits was only 40%. After continuing cleaning to 147 h, redeposition of the sputtered residual deposits on the FM surface was observed. In the future for in situ cleaning of the FMs in EAST and ITER, deposits should be removed timely when they are very thin taking into account a very long cleaning time and presumable redeposition of thick and nonuniform deposits.
  • [1]
    Donné A J H et al 2007 Nucl. Fusion 47 S337
    [2]
    Litnovsky A et al 2009 Nucl. Fusion 49 075014
    [3]
    Litnovsky A et al 2007 Fusion Eng. Des. 82 123
    [4]
    Litnovsky A et al 2017 Fusion Eng. Des. 123 674
    [5]
    Voitsenya V et al 2001 Rev. Sci. Instrum. 72 475
    [6]
    Kotov V et al 2011 Fusion Eng. Des. 86 1583
    [7]
    Litnovsky A et al 2011 Fusion Eng. Des. 86 1780
    [8]
    Razdobarin A G et al 2015 Nucl. Fusion 55 093022
    [9]
    Guo H Y et al 2014 Nucl. Fusion 54 013002
    [10]
    Lan T et al 2015 J. Instrum. 10 C12017
    [11]
    Li Y Y et al 2014 Rev. Sci. Instrum. 85 11E428
    [12]
    Widdowson A et al 2011 J. Nucl. Mater. 415 S1199
    [13]
    Skinner C H et al 2013 Fusion Sci. Technol. 64 1
    [14]
    Maffini A et al 2016 Nucl. Fusion 56 086008
    [15]
    Moser L et al 2017 Phys. Scr. 2017 014047
    [16]
    Marot L et al 2017 Nucl. Mater. Energy 12 605
    [17]
    Soni K et al 2019 Nucl. Mater. Energy 21 100702
    [18]
    Maffini A et al 2017 Nucl. Fusion 57 046014
    [19]
    Litnovsky A et al 2019 Nucl. Fusion 59 066029
    [20]
    Arkhipov I et al 2011 J. Nucl. Mater. 415 S1210
    [21]
    Litnovsky A et al 2015 Nucl. Fusion 55 093015
    [22]
    Zhou Y et al 2011 J. Nucl. Mater. 415 S1206
    [23]
    Yan R et al 2015 J. Nucl. Mater. 463 948
    [24]
    Moser L et al 2015 Nucl. Fusion 55 063020
    [25]
    Leipold F et al 2016 Rev. Sci. Instrum. 87 11D439
    [26]
    Yan R et al 2018 Nucl. Fusion 58 026008
    [27]
    Ushakov A et al 2019 Fusion Eng. Des. 146 1559
    [28]
    Yan R et al 2019 IEEE Trans. Plasma Sci. 47 1769
    [29]
    Peng J et al 2017 Plasma Sci. Technol. 19 105601
    [30]
    Peng J et al 2016 Fusion Eng. Des. 112 317
    [31]
    Dmitriev A et al 2017 Phys. Scr. T170 014072
    [32]
    Miziolek A W, Palleschi V and Schechter I 2006 Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge: Cambridge University Press)
  • Related Articles

    [1]Na LI, Edward HAREFA, Weidong ZHOU. Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(11): 115507. DOI: 10.1088/2058-6272/ac8039
    [2]Qiang LIU (刘强), Qi MIN (敏琦), Maogen SU (苏茂根), Xingbang LIU (刘兴邦), Shiquan CAO (曹世权), Duixiong SUN (孙对兄), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state[J]. Plasma Science and Technology, 2021, 23(12): 125001. DOI: 10.1088/2058-6272/ac2815
    [3]A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e
    [4]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [5]Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
    [6]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [9]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [10]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
  • Cited by

    Periodical cited type(7)

    1. Lin, Y., Wang, X., Zhou, H. et al. Surface damage mechanism and evolution of Al-Zn-Mg-Cu alloy as a sliding electrical contact material under extreme environments. Wear, 2025. DOI:10.1016/j.wear.2025.205995
    2. Wang, M., Wang, Q., Wang, J. et al. Research on Muzzle Arc in Ultra High Speed Air Flow. 2024.
    3. Yu, Y.L., Chen, Z.Y., Xia, S.G. et al. Design an arc suppression system for the Electromagnetic Pellet Injection System. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2023.114100
    4. Beilis, I.I.. Magnetoplasmadynamic acceleration of solid body in a railgun. Journal of Electric Propulsion, 2023, 2(1): 15. DOI:10.1007/s44205-023-00050-1
    5. Beilis, I.I.. Plasma Energy Loss by Cathode Heat Conduction in a Vacuum Arc: Cathode Effective Voltage. Plasma, 2023, 6(3): 492-502. DOI:10.3390/plasma6030034
    6. Beilis, I.I.. Electrodynamic Acceleration of a Dielectric Body by Arc Plasma in a System of Railgun Configuration. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2023. DOI:10.23919/ISDEIV55268.2023.10199638
    7. Wang, X., Li, Y., Shi, Z. et al. Research on Vehicle-Mounted Electromagnetic Ejection Remote Fire Extinguishing System. Mathematical Problems in Engineering, 2022. DOI:10.1155/2022/2129942

    Other cited types(0)

Catalog

    Article views (297) PDF downloads (153) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return