Advanced Search+
Xin AN (安鑫), Jing OU (欧靖), Zongzheng MEN (门宗政). Estimation of the sheath power dissipation induced by ion cyclotron resonance heating[J]. Plasma Science and Technology, 2020, 22(6): 65103-065103. DOI: 10.1088/2058-6272/ab77d2
Citation: Xin AN (安鑫), Jing OU (欧靖), Zongzheng MEN (门宗政). Estimation of the sheath power dissipation induced by ion cyclotron resonance heating[J]. Plasma Science and Technology, 2020, 22(6): 65103-065103. DOI: 10.1088/2058-6272/ab77d2

Estimation of the sheath power dissipation induced by ion cyclotron resonance heating

Funds: This work was supported by National Natural Science Foun- dation of China (Grant No. 11775257).
More Information
  • Received Date: August 29, 2019
  • Revised Date: January 20, 2020
  • Accepted Date: February 18, 2020
  • During ion cyclotron resonance heating, the sheath power dissipation caused by ion acceleration in the radio frequency (RF) sheath is one of the main causes of RF power loss in the tokamak edge region. To estimate the power dissipation of an RF sheath in the ion cyclotron range of frequency (ICRF), a 1D fluid model for the multi-component plasma sheath driven by a sinusoidal disturbance current in the ICRF is presented. By investigation of the sheath potential and ion flux at the wall, it is shown that the larger frequency and lower amplitude of the disturbance current can cause smaller sheath power dissipation. The effect of the energetic ion on the sheath power dissipation depends on the disturbance current. For large amplitude of disturbance current, the increase in the concentration and energy of the energetic ion leads to a decrease in sheath power dissipation. While for a small disturbance current, the sheath power dissipation demonstrates non-monotonic variation with the concentration and energy of the energetic ion. In addition, the sheath power dissipation is found to have a small increase in the presence of light impurity ions with low valence.
  • [1]
    D’Ippolito D A and Myra J R 1996 Phys. Plasmas 3 420
    [2]
    Gan C Y et al 2015 Nucl. Fusion 55 063002
    [3]
    Qin C M et al 2013 Plasma Phys. Controlled Fusion 55 015004
    [4]
    Qin C M et al 2015 Plasma Sci. Technol. 17 167
    [5]
    Bures M et al 1992 Nucl. Fusion 32 1139
    [6]
    Myra J R and D’Ippolito D A 2015 Phys. Plasmas 22 062507
    [7]
    Myra J R et al 2006 Nucl. Fusion 46 S455
    [8]
    Zhang X J et al 2019 Nucl. Fusion 59 044004
    [9]
    Lieberman M A 1988 IEEE Trans. Plasma Sci. 16 638
    [10]
    Edelberg E A and Aydil E S 1999 J. Appl. Phys. 86 4799
    [11]
    Dai Z L, Wang Y N and Ma T C 2002 Phys. Rev. E 65 036403
    [12]
    Gan B X, Deng W J and Chen Y H 2007 Plasma Sci. Technol.9 398
    [13]
    Lee Y D, Oh J J and Shin J K 2002 IEEE Trans. Plasma Sci.30 1320
    [14]
    Lin B B et al 2017 Chin. Phys. Lett. 34 015203
    [15]
    Lei M H et al 2006 Plasma Sci. Technol. 8 544
    [16]
    Jenkins T G and Smithe D N 2015 Plasma Sources Sci.Technol. 24 015020
    [17]
    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
    [18]
    Tierens W et al 2017 Nucl. Fusion 57 116034
    [19]
    Lieberman M A 1989 IEEE Trans. Plasma Sci. 17 338
    [20]
    Brinkmann R P 2009 J. Phys. D Appl. Phys. 42 194009
    [21]
    Hosea J et al 1979 Phys. Rev. Lett. 43 1802
    [22]
    Gierling J and Riemann K U 1998 J. Appl. Phys. 83 3521
    [23]
    Franklin R N 2003 J. Phys. D Appl. Phys. 36 R309
    [24]
    Franklin R N 2003 J. Phys. D Appl. Phys. 36 1806
    [25]
    Zhang X J et al 2014 Phys. Plasmas 21 061501
    [26]
    Bobkov V et al 2016 Nucl. Fusion 56 084001
  • Related Articles

    [1]Hangqi XU, Tao LAN, Min XU, Zhanhui WANG, Lin NIE, Jie WU, Sen ZHANG, Yiming ZU, Yi LIU, Yunbo DONG, Wenzhe MAO, Chen CHEN, Jiaren WU, Pengcheng LU, Tianxiong WANG, Qilong DONG, Yongkang ZHOU, Peng DENG, Xingkang WANG, Zeqi BAI, Yuhua HUANG, Zian WEI, Hai WANG, Xiaohui WEN, Haiyang ZHOU, Chu ZHOU, Ahdi LIU, Zhengwei WU, Jinlin XIE, Hong LI, Chijin XIAO, Weixing DING, Wei CHEN, Wulyu ZHONG, Xuru DUAN, Wandong LIU, Ge ZHUANG. Development of double-foil soft X-ray array imaging (DSXAI) diagnostic on HL-2A tokamak[J]. Plasma Science and Technology, 2025, 27(3): 035103. DOI: 10.1088/2058-6272/ada343
    [2]Yasuhiro SUZUKI (鈴木康浩), Shishir PUROHIT, Satoshi OHDACHI(大舘暁), Satoshi YAMAMOTO (山本聡), Kazunobu NAGASAKI(長崎百伸). New tomographic reconstruction technique based on Laplacian eigenfunction[J]. Plasma Science and Technology, 2020, 22(10): 102002. DOI: 10.1088/2058-6272/aba185
    [3]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [4]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [5]Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf
    [6]R MILLS, J LOTOSKI, Y LU. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels[J]. Plasma Science and Technology, 2017, 19(9): 95001-095001. DOI: 10.1088/2058-6272/aa7383
    [7]ZHU Tuo (朱托), SHANG Wanli (尚万里), ZHANG Wenhai (张文海), YANG Jiamin (杨家敏), et al.. Quantitative Measurement of the Proportions of High-Order Harmonics for the 4B7B Soft-X-Ray Source at Beijing Synchrotron Radiation Facility[J]. Plasma Science and Technology, 2013, 15(12): 1194-1196. DOI: 10.1088/1009-0630/15/12/06
    [8]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16
    [9]ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07
    [10]SHANG Wanli, ZHAO Yang, XIONG Gang, YANG Jiamin, ZHU Tuo. Space-Resolved Spectrum Diagnose by Soft X-Ray Transmission Grating Spectrometer[J]. Plasma Science and Technology, 2011, 13(1): 36-39.
  • Cited by

    Periodical cited type(4)

    1. Gong, S.-B., Zhang, T.-C., Guo, W.-P. et al. Study of the laser propagation characteristics of the vertical Thomson scattering system on HL-3 tokamak | [HL-3 装置垂直汤姆逊散射系统激光传播特性的研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2025, 45(1): 64-68. DOI:10.16568/j.0254-6086.202501011
    2. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    3. Wang, Z.H., Zhang, B., Gong, X.Z. et al. Electron ITB formation in EAST high poloidal beta plasmas under dominant electron heating. Plasma Physics and Controlled Fusion, 2024, 66(6): 065002. DOI:10.1088/1361-6587/ad3c1a
    4. Gong, S.B., Zhang, T.C., Guo, W.P. et al. Edge Thomson scattering diagnostic with compact polychromators on the HL-3 Tokamak. Journal of Instrumentation, 2023, 18(10): C10019. DOI:10.1088/1748-0221/18/10/C10019
    1. Gong, S.-B., Zhang, T.-C., Guo, W.-P. et al. Study of the laser propagation characteristics of the vertical Thomson scattering system on HL-3 tokamak | [HL-3 装置垂直汤姆逊散射系统激光传播特性的研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2025, 45(1): 64-68. DOI:10.16568/j.0254-6086.202501011
    2. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    3. Wang, Z.H., Zhang, B., Gong, X.Z. et al. Electron ITB formation in EAST high poloidal beta plasmas under dominant electron heating. Plasma Physics and Controlled Fusion, 2024, 66(6): 065002. DOI:10.1088/1361-6587/ad3c1a
    4. Gong, S.B., Zhang, T.C., Guo, W.P. et al. Edge Thomson scattering diagnostic with compact polychromators on the HL-3 Tokamak. Journal of Instrumentation, 2023, 18(10): C10019. DOI:10.1088/1748-0221/18/10/C10019

    Other cited types(0)

Catalog

    Article views (127) PDF downloads (66) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return