Advanced Search+
N OUDINI, M M ALIM, R TADJINE, A BENDIB. Gas pressure effect on plasma transport in a magnetic-filtered radio-frequency plasma source[J]. Plasma Science and Technology, 2020, 22(6): 65402-065402. DOI: 10.1088/2058-6272/ab7a41
Citation: N OUDINI, M M ALIM, R TADJINE, A BENDIB. Gas pressure effect on plasma transport in a magnetic-filtered radio-frequency plasma source[J]. Plasma Science and Technology, 2020, 22(6): 65402-065402. DOI: 10.1088/2058-6272/ab7a41

Gas pressure effect on plasma transport in a magnetic-filtered radio-frequency plasma source

More Information
  • Received Date: December 28, 2019
  • Revised Date: February 19, 2020
  • Accepted Date: February 25, 2020
  • Volume negative ion production relies on a magnetic filter (MF), where the plasma downstream of the MF is characterized by a strip-like pattern that consists of a bright and dense plasma region. In this work, we study, in a radio-frequency plasma source, the effects of operating pressure on this strip. This investigation, conducted using a Langmuir probe, shows that the plasma uniformity might be controlled through the gas pressure. Moreover, the operating pressure determines on which hemi-cylinder (side of magnetic field lines) the strip forms. This side inversion of the high-density plasma hemi-cylinder is due to an inversion of an ambipolar electric field that changes the E × B drift direction.
  • [1]
    Macák K et al 2000 J. Vac. Sci. Technol. A 18 1533
    [2]
    Rossnagel S M and Hopwood J 1994 J. Vac. Sci. Technol. B 12 449
    [3]
    Tadjine R, Alim M M and Kechouane M 2017 Surf. Coat.Technol. 309 573
    [4]
    Kaufman H R, Robinson R S and Seddon R I 1987 J. Vac. Sci.Technol. A 5 2081
    [5]
    Oudini N et al 2011 J. Appl. Phys. 109 073310
    [6]
    Mazouffre S, Kulaev V and Pérez Luna J 2009 Plasma Sources Sci. Technol. 18 034022
    [7]
    Garrigues L et al 2006 J. Appl. Phys. 100 123301
    [8]
    Zhurin V V 2012 Industrial Ion Sources: Broadbeam Gridless Ion Source Technology (New York: Wiley)
    [9]
    Kaufman H R and Harper J M E 2004 Ion-assist applications of broad-beam ion sources Proc. SPIE 5527
    [10]
    Klemberg-Sapieha J E et al 2004 Appl. Opt. 43 2670
    [11]
    Kushner M J 2003 J. Appl. Phys. 94 1436
    [12]
    Stamate E and Draghici M 2012 J. Appl. Phys. 111 083303
    [13]
    Draghici M and Stamate E 2010 J. Phys. D: Appl. Phys. 43 155205
    [14]
    Draghici M and Stamate E 2010 J. Appl. Phys. 107 123304
    [15]
    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
    [16]
    Zhurin V V, Kaufman H R and Robinson R S 1999 Plasma Sources Sci. Technol. 8 R1
    [17]
    Aanesland A et al 2015 IEEE Trans. Plasma Sci. 43 321
    [18]
    Lishev S et al 2018 Plasma Sources Sci. Technol. 27 125008
    [19]
    Takahashi K et al 2016 Phys. Rev. Lett. 116 135001
    [20]
    Hagelaar G J M and Oudini N 2011 Plasma Phys. Control.Fusion 53 124032
    [21]
    Fubiani G and Boeuf J P 2014 Phys. Plasmas 21 073512
    [22]
    Gaboriau F, Baude R and Hagelaar G J M 2014 Appl. Phys.Lett. 104 214107
    [23]
    Oudini N et al 2019 Phys. Plasmas 26 113505
    [24]
    Gerst D et al 2013 Plasma Sources Sci. Technol. 22 015024
    [25]
    Narasimhan G and Steinbrüchel C 2001 J. Vac. Sci. Technol. A 19 376
    [26]
    Merlino R L 2007 Am. J. Phys. 75 1078
    [27]
    Stamate E and Ohe K 1998 J. Appl. Phys. 84 2450
    [28]
    Bredin J, Chabert P and Aanesland A 2014 Phys. Plasmas 21 123502
    [29]
    Stamate E 2014 Surf. Coat. Technol. 260 401
    [30]
    Laframboise J G and Rubinstein J 1976 Phys. Fluids 19 1900
    [31]
    Hopwood J et al 1993 J. Vac. Sci. Technol. A 11 147
    [32]
    Seo S H et al 1999 Phys. Plasmas 6 614
    [33]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press)
  • Related Articles

    [1]Renze YU (俞仁泽), Zhaoyuan LIU (刘钊源), Jiao LIN (林娇), Xinyi HE (何心怡), Linsheng LIU (刘林生), Qing XIONG (熊青), Qiang CHEN (陈强), Kostya (Ken) OSTRIKOV (欧思聪). Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system[J]. Plasma Science and Technology, 2021, 23(5): 55504-055504. DOI: 10.1088/2058-6272/abf47f
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [5]Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001
    [6]SHI Xingmin (石兴民), CAI Jingfen (蔡晶芬), XU Guimin (许桂敏), REN Hongbin (任鸿斌), CHEN Sile (陈思乐), CHANG Zhengshi (常正实), LIU Jinren (刘进仁), HUANG Chongya (黄崇亚), ZHANG Guanjun (张冠军), WU Xili (吴喜利). Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts[J]. Plasma Science and Technology, 2016, 18(4): 353-359. DOI: 10.1088/1009-0630/18/4/04
    [7]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [8]LAN Chaohui (蓝朝晖), PENG Yufei (彭宇飞), YANG Zhen (杨振), LONG Jidong (龙继东). Transient Behavior of Negative Hydrogen Ion Extraction from Plasma[J]. Plasma Science and Technology, 2013, 15(9): 945-949. DOI: 10.1088/1009-0630/15/9/21
    [9]Ali Akbar ASHKARRAN. Seed Mediated Growth of Gold Nanoparticles Based on Liquid Arc Discharge[J]. Plasma Science and Technology, 2013, 15(4): 376-381. DOI: 10.1088/1009-0630/15/4/12
    [10]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
  • Cited by

    Periodical cited type(3)

    1. Pang, Y., Li, H., Hua, Y. et al. Rapid Synthesis of Noble Metal Colloids by Plasma–Liquid Interactions. Materials, 2024, 17(5): 987. DOI:10.3390/ma17050987
    2. Xu, L., Wu, H., Wang, X. et al. A simple derivative spectrophotometric method for simultaneously detecting nitrate and nitrite in plasma treated water. Plasma Science and Technology, 2022, 24(8): 085502. DOI:10.1088/2058-6272/ac66bb
    3. Wu, H., Liu, Z., Xu, L. et al. The Ag+Reduction Process in a Plasma Electrochemical System Tuned by the pH Value. Journal of the Electrochemical Society, 2021, 168(12): 123508. DOI:10.1149/1945-7111/ac41f5

    Other cited types(0)

Catalog

    Article views (125) PDF downloads (70) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return