Advanced Search+
N OUDINI, M M ALIM, R TADJINE, A BENDIB. Gas pressure effect on plasma transport in a magnetic-filtered radio-frequency plasma source[J]. Plasma Science and Technology, 2020, 22(6): 65402-065402. DOI: 10.1088/2058-6272/ab7a41
Citation: N OUDINI, M M ALIM, R TADJINE, A BENDIB. Gas pressure effect on plasma transport in a magnetic-filtered radio-frequency plasma source[J]. Plasma Science and Technology, 2020, 22(6): 65402-065402. DOI: 10.1088/2058-6272/ab7a41

Gas pressure effect on plasma transport in a magnetic-filtered radio-frequency plasma source

More Information
  • Received Date: December 28, 2019
  • Revised Date: February 19, 2020
  • Accepted Date: February 25, 2020
  • Volume negative ion production relies on a magnetic filter (MF), where the plasma downstream of the MF is characterized by a strip-like pattern that consists of a bright and dense plasma region. In this work, we study, in a radio-frequency plasma source, the effects of operating pressure on this strip. This investigation, conducted using a Langmuir probe, shows that the plasma uniformity might be controlled through the gas pressure. Moreover, the operating pressure determines on which hemi-cylinder (side of magnetic field lines) the strip forms. This side inversion of the high-density plasma hemi-cylinder is due to an inversion of an ambipolar electric field that changes the E × B drift direction.
  • [1]
    Macák K et al 2000 J. Vac. Sci. Technol. A 18 1533
    [2]
    Rossnagel S M and Hopwood J 1994 J. Vac. Sci. Technol. B 12 449
    [3]
    Tadjine R, Alim M M and Kechouane M 2017 Surf. Coat.Technol. 309 573
    [4]
    Kaufman H R, Robinson R S and Seddon R I 1987 J. Vac. Sci.Technol. A 5 2081
    [5]
    Oudini N et al 2011 J. Appl. Phys. 109 073310
    [6]
    Mazouffre S, Kulaev V and Pérez Luna J 2009 Plasma Sources Sci. Technol. 18 034022
    [7]
    Garrigues L et al 2006 J. Appl. Phys. 100 123301
    [8]
    Zhurin V V 2012 Industrial Ion Sources: Broadbeam Gridless Ion Source Technology (New York: Wiley)
    [9]
    Kaufman H R and Harper J M E 2004 Ion-assist applications of broad-beam ion sources Proc. SPIE 5527
    [10]
    Klemberg-Sapieha J E et al 2004 Appl. Opt. 43 2670
    [11]
    Kushner M J 2003 J. Appl. Phys. 94 1436
    [12]
    Stamate E and Draghici M 2012 J. Appl. Phys. 111 083303
    [13]
    Draghici M and Stamate E 2010 J. Phys. D: Appl. Phys. 43 155205
    [14]
    Draghici M and Stamate E 2010 J. Appl. Phys. 107 123304
    [15]
    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
    [16]
    Zhurin V V, Kaufman H R and Robinson R S 1999 Plasma Sources Sci. Technol. 8 R1
    [17]
    Aanesland A et al 2015 IEEE Trans. Plasma Sci. 43 321
    [18]
    Lishev S et al 2018 Plasma Sources Sci. Technol. 27 125008
    [19]
    Takahashi K et al 2016 Phys. Rev. Lett. 116 135001
    [20]
    Hagelaar G J M and Oudini N 2011 Plasma Phys. Control.Fusion 53 124032
    [21]
    Fubiani G and Boeuf J P 2014 Phys. Plasmas 21 073512
    [22]
    Gaboriau F, Baude R and Hagelaar G J M 2014 Appl. Phys.Lett. 104 214107
    [23]
    Oudini N et al 2019 Phys. Plasmas 26 113505
    [24]
    Gerst D et al 2013 Plasma Sources Sci. Technol. 22 015024
    [25]
    Narasimhan G and Steinbrüchel C 2001 J. Vac. Sci. Technol. A 19 376
    [26]
    Merlino R L 2007 Am. J. Phys. 75 1078
    [27]
    Stamate E and Ohe K 1998 J. Appl. Phys. 84 2450
    [28]
    Bredin J, Chabert P and Aanesland A 2014 Phys. Plasmas 21 123502
    [29]
    Stamate E 2014 Surf. Coat. Technol. 260 401
    [30]
    Laframboise J G and Rubinstein J 1976 Phys. Fluids 19 1900
    [31]
    Hopwood J et al 1993 J. Vac. Sci. Technol. A 11 147
    [32]
    Seo S H et al 1999 Phys. Plasmas 6 614
    [33]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press)
  • Related Articles

    [1]Haiying LI, Jiachen TONG, Wei DING, Bin XU, Lu BAI. Transmission characteristics of terahertz Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab[J]. Plasma Science and Technology, 2022, 24(3): 035004. DOI: 10.1088/2058-6272/ac3ad7
    [2]Debing ZHANG, Limin YU, Erbing XUE, Xianmei ZHANG, Haijun REN. Anomalous transport driven by ion temperature gradient instability in an anisotropic deuterium-tritium plasma[J]. Plasma Science and Technology, 2022, 24(2): 025104. DOI: 10.1088/2058-6272/ac42bc
    [3]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [4]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [5]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [6]Imran Ali KHAN, G MURTAZA. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode[J]. Plasma Science and Technology, 2018, 20(3): 35302-035302. DOI: 10.1088/2058-6272/aaa457
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [9]XU Hui (徐慧), SHENG Zhengming (盛政明). Critical Initial Amplitude of Langmuir Wave Damping[J]. Plasma Science and Technology, 2012, 14(3): 181-268. DOI: 10.1088/1009-0630/14/3/01
    [10]M. RADMILOVIC-RADJENOVIC, B. RADJENOVIC. The Effects of Chemical (isotropic) and Anisotropic Etching Processes on the Roughening of Nanocomposite Substrates[J]. Plasma Science and Technology, 2010, 12(6): 673-676.
  • Cited by

    Periodical cited type(5)

    1. Zhong, F., Zhang, T., Li, G. et al. Pedestal dynamics and turbulence in H-mode density ramp-up experiment on EAST. Nuclear Fusion, 2024, 64(12): 126062. DOI:10.1088/1741-4326/ad8666
    2. Hao, G., Xu, J., Sun, Y. et al. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Plasma Science and Technology, 2024, 26(10): 101001. DOI:10.1088/2058-6272/ad5d8a
    3. Wu, M.-X., Xie, K., Liu, Y. et al. Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift. Chinese Physics B, 2024, 33(5): 055204. DOI:10.1088/1674-1056/ad2d56
    4. Su, P., Lan, H., Zhou, C. et al. Bursting core-localized ellipticity-induced Alfvén eigenmodes driven by energetic electrons during EAST ohmic discharges. Nuclear Fusion, 2024, 64(3): 036019. DOI:10.1088/1741-4326/ad1af7
    5. Zhang, F., Zhang, L., Zhang, W. et al. Line identification of extreme ultraviolet spectra from aluminum ions in EAST Tokamak plasmas. Physica Scripta, 2024, 99(2): 025615. DOI:10.1088/1402-4896/ad2049
    1. Zhong, F., Zhang, T., Li, G. et al. Pedestal dynamics and turbulence in H-mode density ramp-up experiment on EAST. Nuclear Fusion, 2024, 64(12): 126062. DOI:10.1088/1741-4326/ad8666
    2. Hao, G., Xu, J., Sun, Y. et al. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Plasma Science and Technology, 2024, 26(10): 101001. DOI:10.1088/2058-6272/ad5d8a
    3. Wu, M.-X., Xie, K., Liu, Y. et al. Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift. Chinese Physics B, 2024, 33(5): 055204. DOI:10.1088/1674-1056/ad2d56
    4. Su, P., Lan, H., Zhou, C. et al. Bursting core-localized ellipticity-induced Alfvén eigenmodes driven by energetic electrons during EAST ohmic discharges. Nuclear Fusion, 2024, 64(3): 036019. DOI:10.1088/1741-4326/ad1af7
    5. Zhang, F., Zhang, L., Zhang, W. et al. Line identification of extreme ultraviolet spectra from aluminum ions in EAST Tokamak plasmas. Physica Scripta, 2024, 99(2): 025615. DOI:10.1088/1402-4896/ad2049

    Other cited types(0)

Catalog

    Article views (126) PDF downloads (70) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return