Advanced Search+
Xiaogang YUAN (袁小刚), Lei CHANG (苌磊), Xin YANG (杨鑫), Haishan ZHOU (周海山), Guangnan LUO (罗广南). On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field[J]. Plasma Science and Technology, 2020, 22(9): 94003-094003. DOI: 10.1088/2058-6272/ab80d3
Citation: Xiaogang YUAN (袁小刚), Lei CHANG (苌磊), Xin YANG (杨鑫), Haishan ZHOU (周海山), Guangnan LUO (罗广南). On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field[J]. Plasma Science and Technology, 2020, 22(9): 94003-094003. DOI: 10.1088/2058-6272/ab80d3

On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field

Funds: This work is supported by various funding sources: Chinese Academy of Sciences ‘100 Talent’ Program (B), Pre-research of Key Laboratory Fund for Equipment (No. 61422070306), Shanghai Engineering Research Center of Space Engine (No. 17DZ2280800), National Postdoctoral Program for Innovative Talents (No. BX201700248), and China Postdoctoral Science Foundation (No. 2017M622035).
More Information
  • Received Date: December 05, 2019
  • Revised Date: March 16, 2020
  • Accepted Date: March 17, 2020
  • To study the heating mechanism of electron cyclotron resonance thruster (ECRT) immersed in a non-uniform magnetic field, experiments and simulations are performed based on an electron cyclotron resonance plasma source at ASIPP. It is found that the first harmonic of electron cyclotron resonance is essential for plasma ignition at high magnetic field (0.0875 T), while the plasma can sustain without the first and second harmonics of electron cyclotron resonance at low magnetic field (till 0.0170T). Evidence of radial hollow density profile indicates that upper hybrid resonance, which has strong edge heating effect, is the heating mechanism of low-field ECRT. The heating mode transition from electron cyclotron resonance to upper hybrid resonance is also revealed. Interestingly, the evolutions of electron temperature and electron density with input power experience a ‘delayed’ jump, which may be correlated with the different power levels required for cyclotron and ionization. Moreover, when the field strength decreased, the variation of electron density behaves in an opposite trend with that of electron temperature, implying a possible competition of power deposition between them. The present work is of great interest for understanding the plasma discharge in ECRT especially immersed in a non-uniform magnetic field, and designing efficient ECRT using low magnetic field for economic space applications.
  • [1]
    Ganguli A et al 2019 Plasma Sources Sci. Technol. 28 035014
    [2]
    Correyero S et al 2019 Phys. Plasmas 26 053511
    [3]
    Skalyga V et al 2019 Plasma Phys. Rep. 45 984
    [4]
    Brainerd Jerome R A 2009 13th Conf. on Thermophysics Applications in Microgravity/6th Symp. on New Frontiers in Space Propulsion Sciences/1st Symp. on Astrosociology, Propulsion & Energy Sciences Int. Forum Spesif-2009 vol 133
    [5]
    Yang J et al 2008 Rev. Sci. Instrum. 79 083503
    [6]
    Jin Y et al 2017 Plasma Sci. Technol. 19 1009
    [7]
    Yang J et al 2013 J. Propul. Power 29 744
    [8]
    Bentounes J et al 2018 Plasma Sources Sci. Technol. 27 055015
    [9]
    Yang J et al 2018 Plasma Sci. Technol. 20 085402
    [10]
    Yang J et al 2008 Phys. Plasmas 15 023503
    [11]
    Zhou H et al 2014 J. Nucl. Mater. 455 470
    [12]
    Liu H et al 2019 J. Nucl. Mater. 514 109
    [13]
    Anderl R et al 1999 J. Nucl. Mater. 266 761
    [14]
    Zushi H et al 1988 Nucl. Fusion 28 1801
    [15]
    Conway G D and Blackwell B D 1991 Plasma Phys. Control.Fusion 33 135
    [16]
    Fidone I et al 1978 Phys. Fluids 21 645
    [17]
    Girka A V, Girka V O and Pavlenko I V 2010 Probl. At. Sci.Technol. 4 274
    [18]
    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013
    [19]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [20]
    Menietti J D et al 2019 J. Geophys. Res.-Space Phys. 124 5709
    [21]
    Starodubtsev M et al 2019 Phys. Plasmas 26 072902
    [22]
    Lopez N A and Ram A K 2018 Plasma Phys. Control. Fusion 60 125012
  • Related Articles

    [1]Jingyuan FU (付敬原), Pengfei LIU (刘鹏飞), Xishuo WEI (魏西硕), Zhihong LIN (林志宏), Nathaniel Mandrachia FERRARO, Raffi NAZIKIAN. Effects of resonant magnetic perturbations on radial electric fields in DIII-D tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105104. DOI: 10.1088/2058-6272/ac190e
    [2]Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c
    [3]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [4]Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0
    [5]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [6]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [7]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [8]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [9]HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
    [10]Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15
  • Cited by

    Periodical cited type(4)

    1. Svarnas, P.. Electron cyclotron resonance (ECR) plasmas: A topical review through representative results obtained over the last 60 years. Journal of Applied Physics, 2025, 137(7): 070701. DOI:10.1063/5.0249342
    2. Zeng, M., Liu, H., Huang, H. et al. Effects of magnetic field strength on the microwave discharge cusped field thruster. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111504
    3. Yuan, X., Zhou, H., Liu, H. et al. Particle flux characteristics of a compact high-field cascaded arc plasma device. Plasma Science and Technology, 2021, 23(11): 115402. DOI:10.1088/2058-6272/ac1fd8
    4. Liu, H., Zeng, M., Chen, Z. et al. Electron cyclotron resonance discharge enhancement in a cusped field thruster. Plasma Sources Science and Technology, 2021, 30(9): 09LT01. DOI:10.1088/1361-6595/abaffc

    Other cited types(0)

Catalog

    Article views (132) PDF downloads (201) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return