Citation: | Xiaogang YUAN (袁小刚), Lei CHANG (苌磊), Xin YANG (杨鑫), Haishan ZHOU (周海山), Guangnan LUO (罗广南). On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field[J]. Plasma Science and Technology, 2020, 22(9): 94003-094003. DOI: 10.1088/2058-6272/ab80d3 |
[1] |
Ganguli A et al 2019 Plasma Sources Sci. Technol. 28 035014
|
[2] |
Correyero S et al 2019 Phys. Plasmas 26 053511
|
[3] |
Skalyga V et al 2019 Plasma Phys. Rep. 45 984
|
[4] |
Brainerd Jerome R A 2009 13th Conf. on Thermophysics Applications in Microgravity/6th Symp. on New Frontiers in Space Propulsion Sciences/1st Symp. on Astrosociology, Propulsion & Energy Sciences Int. Forum Spesif-2009 vol 133
|
[5] |
Yang J et al 2008 Rev. Sci. Instrum. 79 083503
|
[6] |
Jin Y et al 2017 Plasma Sci. Technol. 19 1009
|
[7] |
Yang J et al 2013 J. Propul. Power 29 744
|
[8] |
Bentounes J et al 2018 Plasma Sources Sci. Technol. 27 055015
|
[9] |
Yang J et al 2018 Plasma Sci. Technol. 20 085402
|
[10] |
Yang J et al 2008 Phys. Plasmas 15 023503
|
[11] |
Zhou H et al 2014 J. Nucl. Mater. 455 470
|
[12] |
Liu H et al 2019 J. Nucl. Mater. 514 109
|
[13] |
Anderl R et al 1999 J. Nucl. Mater. 266 761
|
[14] |
Zushi H et al 1988 Nucl. Fusion 28 1801
|
[15] |
Conway G D and Blackwell B D 1991 Plasma Phys. Control.Fusion 33 135
|
[16] |
Fidone I et al 1978 Phys. Fluids 21 645
|
[17] |
Girka A V, Girka V O and Pavlenko I V 2010 Probl. At. Sci.Technol. 4 274
|
[18] |
Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013
|
[19] |
Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
|
[20] |
Menietti J D et al 2019 J. Geophys. Res.-Space Phys. 124 5709
|
[21] |
Starodubtsev M et al 2019 Phys. Plasmas 26 072902
|
[22] |
Lopez N A and Ram A K 2018 Plasma Phys. Control. Fusion 60 125012
|
[1] | Jingyuan FU (付敬原), Pengfei LIU (刘鹏飞), Xishuo WEI (魏西硕), Zhihong LIN (林志宏), Nathaniel Mandrachia FERRARO, Raffi NAZIKIAN. Effects of resonant magnetic perturbations on radial electric fields in DIII-D tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105104. DOI: 10.1088/2058-6272/ac190e |
[2] | Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c |
[3] | Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63 |
[4] | Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0 |
[5] | Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9 |
[6] | Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505 |
[7] | A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06 |
[8] | RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05 |
[9] | HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04 |
[10] | Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15 |
1. | Svarnas, P.. Electron cyclotron resonance (ECR) plasmas: A topical review through representative results obtained over the last 60 years. Journal of Applied Physics, 2025, 137(7): 070701. DOI:10.1063/5.0249342 |
2. | Zeng, M., Liu, H., Huang, H. et al. Effects of magnetic field strength on the microwave discharge cusped field thruster. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111504 |
3. | Yuan, X., Zhou, H., Liu, H. et al. Particle flux characteristics of a compact high-field cascaded arc plasma device. Plasma Science and Technology, 2021, 23(11): 115402. DOI:10.1088/2058-6272/ac1fd8 |
4. | Liu, H., Zeng, M., Chen, Z. et al. Electron cyclotron resonance discharge enhancement in a cusped field thruster. Plasma Sources Science and Technology, 2021, 30(9): 09LT01. DOI:10.1088/1361-6595/abaffc |