Advanced Search+
Hongming ZHANG (张洪明), Bo LYU (吕波), Liang HE (何梁), Yongcai SHEN (沈永才), Jun CHEN (陈俊), Jia FU (符佳), Bin BIN (宾斌), Xunyu WANG (王勋禺), Fudi WANG (王福地), Yingying LI (李颖颖), Ling ZHANG (张凌), Bing LIU (刘兵). Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak[J]. Plasma Science and Technology, 2020, 22(8): 84001-084001. DOI: 10.1088/2058-6272/ab81a4
Citation: Hongming ZHANG (张洪明), Bo LYU (吕波), Liang HE (何梁), Yongcai SHEN (沈永才), Jun CHEN (陈俊), Jia FU (符佳), Bin BIN (宾斌), Xunyu WANG (王勋禺), Fudi WANG (王福地), Yingying LI (李颖颖), Ling ZHANG (张凌), Bing LIU (刘兵). Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak[J]. Plasma Science and Technology, 2020, 22(8): 84001-084001. DOI: 10.1088/2058-6272/ab81a4

Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak

Funds: The work is partially supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2017YFE0301300 and 2018YFE0301100), National Natural Science Foundation of China (Nos. 11805231, 11705151), ASIPP Science and Research Grant (No. DSJJ-17-03), Key Program of Research and Development of Hefei Science Center (No. 2017HSC-KPRD002), Anhui Provincial Natural Sci- ence Foundation (Nos. 1808085QA14 and 1908085J01), Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20180013) and Collaborative Innovation Program of Hefei Science Center, CAS (No. 2019HSC-CIP005).
More Information
  • Received Date: January 06, 2020
  • Revised Date: March 15, 2020
  • Accepted Date: March 19, 2020
  • The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet (VUV) range, as heating power increasing in the Experimental Advanced Superconducting Tokamak (EAST). The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas. Therefore, in this study, a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST. One Seya-Namioka VUV spectrometer (McPherson 234/302) is used in the system, equipped with a concave-corrected holographic grating with groove density of 600 grooves mm –1. Impurity line emissions can be observed in the wavelength range of λ=50–700 nm, covering VUV, near ultraviolet and visible ranges. The observed vertical range is Z=−350–350 mm. The minimum sampling time can be set to 5ms under full vertical binning (FVB) mode. VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign. Impurity spectra are identified for several impurity species, i.e., lithium (Li), carbon (C), oxygen (O), and iron (Fe). Several candidates for tungsten (W) lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines. Time evolutions of impurity carbon emissions of CII at 134.5nm and CIII at 97.7nm are analyzed to prove the system capability of time-resolved measurement. The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.
  • [1]
    Isler R C 1984 Nucl. Fusion 24 1599
    [2]
    Doyle E J et al 2007 Nucl. Fusion 47 S18
    [3]
    Wan B N et al 2017 Nucl. Fusion 57 102019
    [4]
    Vogel G et al 2018 IEEE Trans. Plasma Sci. 46 1350
    [5]
    Oishi T et al 2014 Rev. Sci. Instrum. 85 11E415
    [6]
    Oishi T et al 2015 Plasma Fusion Res. 10 3402031
    [7]
    Oishi T et al 2016 Phy. Scripta 91 025602
    [8]
    Mao H M et al 2017 Rev. Sci. Instrum. 88 043502
    [9]
    Shen Y C et al 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 700 86
    [10]
    Shen Y C et al 2013 Fusion Eng. Des. 88 3072
    [11]
    Zhang L et al 2015 Rev. Sci. Instrum. 86 123509
    [12]
    Zhang L et al 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 916 169
    [13]
    Field A R et al 1995 Rev. Sci. Instrum. 66 5433
    [14]
    Krawczyk N et al 2018 Rev. Sci. Instrum. 89 10D131
    [15]
    De Michelis C et al 2002 Plasma Phys. Control. Fusion 44 1393
    [16]
    Oishi T et al 2014 Appl. Opt. 53 6900
    [17]
    Namioka T 1959 J. Opt. Soc. Am. 49 951
    [18]
    Noda H et al 1974 J. Opt. Soc. Am. 64 1043
  • Related Articles

    [1]Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU. An innovative approach to effective breeding blanket design for future fusion reactors[J]. Plasma Science and Technology, 2024, 26(10): 105601. DOI: 10.1088/2058-6272/ad5a66
    [2]Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
    [3]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [4]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [5]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [6]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]YANG Yu (杨愚), S. MARUYAMA, A. FOSSEN, F. VILLERS, G. KISS, ZHANG Bo (张博), LI Bo (李波), JIANG Tao (江涛), HUANG Xiangmei (黄向玫). Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design[J]. Plasma Science and Technology, 2016, 18(8): 875-878. DOI: 10.1088/1009-0630/18/8/15
    [9]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
    [10]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), WANG Xiaoyu (王晓宇), K. IOKI, DU Shuangsong (杜双松), JI Xiang (戢翔), FENG Changle (冯昌乐), XU Yang (徐扬). Static Structural Analysis for a Neutron Shielding Block in ITER[J]. Plasma Science and Technology, 2013, 15(2): 142-147. DOI: 10.1088/1009-0630/15/2/13

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return