Advanced Search+
Hongming ZHANG (张洪明), Bo LYU (吕波), Liang HE (何梁), Yongcai SHEN (沈永才), Jun CHEN (陈俊), Jia FU (符佳), Bin BIN (宾斌), Xunyu WANG (王勋禺), Fudi WANG (王福地), Yingying LI (李颖颖), Ling ZHANG (张凌), Bing LIU (刘兵). Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak[J]. Plasma Science and Technology, 2020, 22(8): 84001-084001. DOI: 10.1088/2058-6272/ab81a4
Citation: Hongming ZHANG (张洪明), Bo LYU (吕波), Liang HE (何梁), Yongcai SHEN (沈永才), Jun CHEN (陈俊), Jia FU (符佳), Bin BIN (宾斌), Xunyu WANG (王勋禺), Fudi WANG (王福地), Yingying LI (李颖颖), Ling ZHANG (张凌), Bing LIU (刘兵). Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak[J]. Plasma Science and Technology, 2020, 22(8): 84001-084001. DOI: 10.1088/2058-6272/ab81a4

Development of vacuum ultraviolet spectroscopy for measuring edge impurity emission in the EAST tokamak

Funds: The work is partially supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2017YFE0301300 and 2018YFE0301100), National Natural Science Foundation of China (Nos. 11805231, 11705151), ASIPP Science and Research Grant (No. DSJJ-17-03), Key Program of Research and Development of Hefei Science Center (No. 2017HSC-KPRD002), Anhui Provincial Natural Sci- ence Foundation (Nos. 1808085QA14 and 1908085J01), Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20180013) and Collaborative Innovation Program of Hefei Science Center, CAS (No. 2019HSC-CIP005).
More Information
  • Received Date: January 06, 2020
  • Revised Date: March 15, 2020
  • Accepted Date: March 19, 2020
  • The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet (VUV) range, as heating power increasing in the Experimental Advanced Superconducting Tokamak (EAST). The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas. Therefore, in this study, a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST. One Seya-Namioka VUV spectrometer (McPherson 234/302) is used in the system, equipped with a concave-corrected holographic grating with groove density of 600 grooves mm –1. Impurity line emissions can be observed in the wavelength range of λ=50–700 nm, covering VUV, near ultraviolet and visible ranges. The observed vertical range is Z=−350–350 mm. The minimum sampling time can be set to 5ms under full vertical binning (FVB) mode. VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign. Impurity spectra are identified for several impurity species, i.e., lithium (Li), carbon (C), oxygen (O), and iron (Fe). Several candidates for tungsten (W) lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines. Time evolutions of impurity carbon emissions of CII at 134.5nm and CIII at 97.7nm are analyzed to prove the system capability of time-resolved measurement. The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.
  • [1]
    Isler R C 1984 Nucl. Fusion 24 1599
    [2]
    Doyle E J et al 2007 Nucl. Fusion 47 S18
    [3]
    Wan B N et al 2017 Nucl. Fusion 57 102019
    [4]
    Vogel G et al 2018 IEEE Trans. Plasma Sci. 46 1350
    [5]
    Oishi T et al 2014 Rev. Sci. Instrum. 85 11E415
    [6]
    Oishi T et al 2015 Plasma Fusion Res. 10 3402031
    [7]
    Oishi T et al 2016 Phy. Scripta 91 025602
    [8]
    Mao H M et al 2017 Rev. Sci. Instrum. 88 043502
    [9]
    Shen Y C et al 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 700 86
    [10]
    Shen Y C et al 2013 Fusion Eng. Des. 88 3072
    [11]
    Zhang L et al 2015 Rev. Sci. Instrum. 86 123509
    [12]
    Zhang L et al 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 916 169
    [13]
    Field A R et al 1995 Rev. Sci. Instrum. 66 5433
    [14]
    Krawczyk N et al 2018 Rev. Sci. Instrum. 89 10D131
    [15]
    De Michelis C et al 2002 Plasma Phys. Control. Fusion 44 1393
    [16]
    Oishi T et al 2014 Appl. Opt. 53 6900
    [17]
    Namioka T 1959 J. Opt. Soc. Am. 49 951
    [18]
    Noda H et al 1974 J. Opt. Soc. Am. 64 1043
  • Cited by

    Periodical cited type(10)

    1. Shen, Y.C., Fan, Y., Zhang, H.M. et al. Development and test of the laser blow-off impurity injection system in experimental advanced superconducting tokamak. Review of Scientific Instruments, 2024, 95(8): 083554. DOI:10.1063/5.0215727
    2. Ji, H., Zhang, H., Lyu, B. et al. Wavelength calibration and spectral analysis of vacuum ultraviolet spectroscopy in EAST. Plasma Science and Technology, 2024, 26(8): 085105. DOI:10.1088/2058-6272/ad4f24
    3. Lin, Z.C., Zhang, H.M., Wang, F.D. et al. Ion temperature and rotation velocity measurements of carbon and boron ions using VUV spectroscopy on EAST. Review of Scientific Instruments, 2024, 95(7): 073525. DOI:10.1063/5.0214997
    4. Shen, Y., Niu, Y., Kong, D. et al. Vacuum-Ultraviolet spectrometer system for impurity emission measurement on a Compact Torus Injection System of EAST. Journal of Instrumentation, 2024, 19(5): P05075. DOI:10.1088/1748-0221/19/05/P05075
    5. Sun, B., Liu, C., Zhang, H. et al. Extreme ultraviolet spectral image processing system based on FPGA | [基于 FPGA 的极紫外光谱图像处理系统]. He Jishu/Nuclear Techniques, 2024, 47(3): 030401. DOI:10.11889/j.0253-3219.2024.hjs.47.030401
    6. Sun, B., Zhang, H., Lyu, B. et al. Design of sCMOS-based EUV imaging system. Proceedings of SPIE - The International Society for Optical Engineering, 2024. DOI:10.1117/12.3040452
    7. He, L., Shen, Y., Zhang, H. et al. Space-resolved vacuum-ultraviolet spectroscopy for measuring impurity emission from divertor region of EAST tokamak. Plasma Science and Technology, 2022, 24(6): 064003. DOI:10.1088/2058-6272/ac5f81
    8. Ji, H., Zhang, H., Yang, X. et al. Evaluation of plasma impurity concentration during radiative divertor operation mode on EAST | [EAST辐射偏滤器运行模式下等离子体杂质浓度评估方法]. He Jishu/Nuclear Techniques, 2022, 45(3): 030501. DOI:10.11889/j.0253-3219.2022.hjs.45.030501
    9. He, L., Zhang, H.-M., Cao, J.-J. et al. Preliminary experiment of fast vacuum ultraviolet spectroscopic diagnostic system on EAST | [快速真空紫外光谱诊断在 EAST 实验的初步应用]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2021, 41(2): 110-117. DOI:10.16568/j.0254-6086.202102003
    10. He, L., Zhang, H.M., Lyu, B. et al. Development and preliminary test of a space-resolved vacuum-ultraviolet spectroscopy in EAST. Review of Scientific Instruments, 2021, 92(4): 043519. DOI:10.1063/5.0040643

    Other cited types(0)

Catalog

    Article views (192) PDF downloads (109) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return