Advanced Search+
Tianbai DENG (邓天白), Ge GAO (高格), Yanan WU (吴亚楠), Jun LI (李俊), Peng FU (傅鹏), Sheng LIU (刘生), Min WANG (王敏). A commutation analytical model for quench protection of the CFETR central solenoid model coil[J]. Plasma Science and Technology, 2020, 22(6): 65603-065603. DOI: 10.1088/2058-6272/ab81a5
Citation: Tianbai DENG (邓天白), Ge GAO (高格), Yanan WU (吴亚楠), Jun LI (李俊), Peng FU (傅鹏), Sheng LIU (刘生), Min WANG (王敏). A commutation analytical model for quench protection of the CFETR central solenoid model coil[J]. Plasma Science and Technology, 2020, 22(6): 65603-065603. DOI: 10.1088/2058-6272/ab81a5

A commutation analytical model for quench protection of the CFETR central solenoid model coil

More Information
  • Received Date: February 06, 2020
  • Revised Date: March 15, 2020
  • Accepted Date: March 19, 2020
  • A central solenoid model coil will be set up to develop and verify the technique for the full-size central solenoid coil of the China Fusion Engineering Test Reactor. In case of quench and failures of superconducting coils, the quench protection (QP) system, which employs fuse-based commutation technology, is designed. This paper presents an analytical model to investigate the commutation process in the QP circuit. The model consists of the QP circuit equations, the breaker arc model, the fuse pre-arc model, and the fuse arc model. The model is employed in the whole commutation process including current transfer from breaker branch to the fuse branch model, then from fuse branch to the discharge resistor branch, and current decrease to zero in the discharge resistor. The experiment result verified the effectiveness of the presented model. The model might be helpful for design of the fuse and optimization of the commutation circuit.
  • [1]
    Song Y T et al 2014 IEEE Trans. Plasma Sci. 42 503
    [2]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [3]
    Zhuang G et al 2019 Nucl. Fusion 59 112010
    [4]
    Ren Y et al 2015 Nucl. Fusion 55 093002
    [5]
    Qin J G et al 2016 IEEE Trans. Appl. Supercond. 26 4801305
    [6]
    Gaio E et al 2018 Nucl. Fusion 58 075001
    [7]
    Song I et al 2011 The fast discharge system of ITER superconducting magnets 2011 Int. Conf. on Electrical Machines and Systems (Beijing, China, 20–23 August, 2011) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/ICEMS.2011.6073779)
    [8]
    Tong W et al 2019 IEEE Access 7 81257
    [9]
    Tong W et al 2020 IEEE Trans. Appl. Supercond. 30 4700109
    [10]
    Wang K et al 2019 IEEE Access 7 52122
    [11]
    Wang K et al 2019 IEEE Trans. Appl. Supercond. 29 4703408
    [12]
    He J et al 2019 Fusion Eng. Des. 148 111294
    [13]
    Fu P et al 2006 Nucl. Fusion 46 S85
    [14]
    Chikaraishi H et al 1998 Fusion Eng. Des. 41 259
    [15]
    Ma Y Y et al 2018 IEEE Trans. Appl. Supercond. 28 4204405
    [16]
    Ma Y Y et al 2018 IEEE Trans. Appl. Supercond. 28 4700306
    [17]
    Yang F et al 2012 Plasma Sci. Technol. 14 167
    [18]
    Li S et al 2014 Plasma Sci. Technol. 16 294
    [19]
    Cobine J D and Burger E E 1955 J. Appl. Phys. 26 895
    [20]
    Wright A and Beaumont K J 1976 Proc. Inst. Electric. Eng.123 252
  • Related Articles

    [1]Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd
    [2]Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb
    [3]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [4]ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20
    [5]CHEN Hongyun (陈虹运), GOU Li (芶立). Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD[J]. Plasma Science and Technology, 2015, 17(12): 1038-1042. DOI: 10.1088/1009-0630/17/12/10
    [6]LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11
    [7]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [8]Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01
    [9]SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07
    [10]LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479.
  • Cited by

    Periodical cited type(12)

    1. Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c
    2. Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372
    5. Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692
    8. Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022
    9. Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656
    10. Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4
    11. Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b
    12. Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5

    Other cited types(0)

Catalog

    Article views (104) PDF downloads (48) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return