Advanced Search+
Espedito VASSALLO, Matteo PEDRONI, Tiziana SILVETTI, Stefano MORANDI, Milena BRASCA. Inactivation of Staphylococcus aureus by the synergistic action of charged and reactive plasma particles[J]. Plasma Science and Technology, 2020, 22(8): 85504-085504. DOI: 10.1088/2058-6272/ab8c32
Citation: Espedito VASSALLO, Matteo PEDRONI, Tiziana SILVETTI, Stefano MORANDI, Milena BRASCA. Inactivation of Staphylococcus aureus by the synergistic action of charged and reactive plasma particles[J]. Plasma Science and Technology, 2020, 22(8): 85504-085504. DOI: 10.1088/2058-6272/ab8c32

Inactivation of Staphylococcus aureus by the synergistic action of charged and reactive plasma particles

Funds: The research leading to these results is partly funded by the research agreement between Istituto di Fisica del Plasma and Kenosistec Srl (protocol CNR-IFP No. 63, 22/01/2018).
More Information
  • Received Date: January 27, 2020
  • Revised Date: April 19, 2020
  • Accepted Date: April 21, 2020
  • In this paper, a low-pressure capacitively coupled plasma discharge sustained in an argonoxygen mixture was studied in order to evaluate its properties in terms of inactivation of Staphylococcus aureus. The plasma parameters as electron temperature and plasma density were measured by the Langmuir probe (Ne ≈ 1015 m−3, Te ≈ 1.5 eV), while the neutral atom density was in the range of 1021 m−3. In the plasma phase, oxygen radicals were taken as reference of the reactive species with antimicrobial activity, and oxygen spectral lines, over a range of plasma process parameters, were investigated by the optical emission spectroscopy. Optimal plasma conditions were found, and a count reduction of 4 log in a few minutes of the bacterium proves the potentiality of an industrial grade plasma reactor as a sterilization agent.
  • [1]
    Baxter R L et al 2006 J. Hosp. Infect. 63 439
    [2]
    Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
    [3]
    Niemira B A 2012 Annu. Rev. Food Sci. Technol. 3 125
    [4]
    Basaran P, Basaran-Akgul N and Oksuz L 2008 Food Microbiol. 25 626
    [5]
    Bermúdez-Aguirre D et al 2013 Food Control 34 149
    [6]
    Lacombe A et al 2017 Food Microbiol. 63 1
    [7]
    Singh M K and Nagatsu M 2015 Plasma Med. 5 159
    [8]
    von Keudell A et al 2010 Plasma Process. Polym. 7 327
    [9]
    Pedroni M et al 2018 J. Vac. Sci. Technol. B 36 01A107
    [10]
    Weltmann K D et al 2012 IEEE Trans. Plasma Sci. 40 2963
    [11]
    Mai-Prochnow A et al 2016 Sci. Rep. 6 38610
    [12]
    IOS 2009 Sterilization of Health Care Products—General Requirements for Characterization of a Sterilizing Agent and the Development, Validation and Routine Control of a Sterilization Process for Medical Devices: UNI EN ISO ISO 14937:2009 (Geneva: International Organization for Standardization)
    [13]
    Joshi S G et al 2011 Antimicrob. Agents Ch. 55 1053
    [14]
    Koenig H R and Maissel L I 1970 IBM J. Res. Dev. 14 168
    [15]
    Morandi S et al 2009 Int. J. Microbiol. 2009 501362
    [16]
    Rhee J K et al 2007 Thin Solid Films 515 4909
    [17]
    McConkey J W et al 2008 Phys. Rep. 466 1
    [18]
    Laporta V, Celiberto R and Tennyson J 2015 Phys. Rev. A 91 012701
    [19]
    Taylor K J and Tynan G R 2005 J. Vac. Sci. Technol. A 23 643
    [20]
    Chung T H, Ra Kang H and Keun Bae M 2012 Phys. Plasmas 19 113502
    [21]
    Fuller N C M et al 2000 Plasma Sources Sci. Technol. 9 116
    [22]
    Krstulović N et al 2006 J. Phys. D: Appl. Phys. 39 3799
    [23]
    Kakati H et al 2007 J. Appl. Phys. 101 083304
    [24]
    Coburn J W and Chen M 1980 J. Appl. Phys. 51 3134
    [25]
    Braithwaite N S J 2000 Plasma Sources Sci. Technol. 9 517
    [26]
    Cvelbar U et al 2006 J. Phys. D: Appl. Phys. 39 3487
    [27]
    Tümmel S et al 2007 Plasma Process. Polym. 4 S465
    [28]
    Pflug I J, Holkomb R G and Gómez M M 2001 Principles of the thermal destruction of microorganisms ed S S Block Disinfection, Sterilization, and Preservation (Philadelphia, PA: Lippincott Williams Wilkins)
    [29]
    Pijls B G et al 2020 Int. J. Hyperther. 37 130
    [30]
    Bohm D, Burhop E H S and Massey H S W 1949 The use of probes for plasma exploration in strong magnetic fields ed A Guthrie and R K Waker1ing The Characteristics of Electrical Discharges in Magnetic Fields (New York: McGraw-Hill)
    [31]
    Moisan M et al 2009 Pure Appl. Chem. 74 349
    [32]
    Lerouge S et al 2000 Plasmas Polym. 5 31
    [33]
    Pearse R W B and Gaydon A G 1976 The Identification of Molecular Spectra 4th edn (London: Chapman and Hall)
    [34]
    von Keudell A and Corbella C 2017 J. Vac. Sci. Technol. A 35 050801
    [35]
    Rossi F et al 2009 New J. Phys. 11 115017
    [36]
    Al-Mariri A et al 2013 Iran. J. Med. Sci. 38 334–8 PMID:24293788
    [37]
    Lerouge S, Wertheimer M R and Yahia L H 2001 Plasmas Polym. 6 175
    [38]
    Kylián O and Rossi F 2009 J. Phys. D: Appl. Phys. 42 085207
  • Related Articles

    [1]Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU. An innovative approach to effective breeding blanket design for future fusion reactors[J]. Plasma Science and Technology, 2024, 26(10): 105601. DOI: 10.1088/2058-6272/ad5a66
    [2]Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
    [3]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [4]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [5]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [6]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]YANG Yu (杨愚), S. MARUYAMA, A. FOSSEN, F. VILLERS, G. KISS, ZHANG Bo (张博), LI Bo (李波), JIANG Tao (江涛), HUANG Xiangmei (黄向玫). Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design[J]. Plasma Science and Technology, 2016, 18(8): 875-878. DOI: 10.1088/1009-0630/18/8/15
    [9]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
    [10]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), WANG Xiaoyu (王晓宇), K. IOKI, DU Shuangsong (杜双松), JI Xiang (戢翔), FENG Changle (冯昌乐), XU Yang (徐扬). Static Structural Analysis for a Neutron Shielding Block in ITER[J]. Plasma Science and Technology, 2013, 15(2): 142-147. DOI: 10.1088/1009-0630/15/2/13

Catalog

    Article views (95) PDF downloads (149) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return