Advanced Search+
Tetsutarou OISHI (大石鉄太郎), Naoko ASHIKAWA (芦川直子), Federico NESPOLI, Suguru MASUZAKI (増崎貴), Mamoru SHOJI (庄司主), Eric P GILSON, Robert LUNSFORD, Shigeru MORITA (森田繁), Motoshi GOTO (後藤基志), Yasuko KAWAMOTO (川本靖子). Line identification of boron and nitrogen emissions in extreme- and vacuum-ultraviolet wavelength ranges in the impurity powder dropping experiments of the Large Helical Device and its application to spectroscopic diagnostic[J]. Plasma Science and Technology, 2021, 23(8): 84002-084002. DOI: 10.1088/2058-6272/abfd88
Citation: Tetsutarou OISHI (大石鉄太郎), Naoko ASHIKAWA (芦川直子), Federico NESPOLI, Suguru MASUZAKI (増崎貴), Mamoru SHOJI (庄司主), Eric P GILSON, Robert LUNSFORD, Shigeru MORITA (森田繁), Motoshi GOTO (後藤基志), Yasuko KAWAMOTO (川本靖子). Line identification of boron and nitrogen emissions in extreme- and vacuum-ultraviolet wavelength ranges in the impurity powder dropping experiments of the Large Helical Device and its application to spectroscopic diagnostic[J]. Plasma Science and Technology, 2021, 23(8): 84002-084002. DOI: 10.1088/2058-6272/abfd88

Line identification of boron and nitrogen emissions in extreme- and vacuum-ultraviolet wavelength ranges in the impurity powder dropping experiments of the Large Helical Device and its application to spectroscopic diagnostic

Funds: This work is partially supported by the Post-CUP program, JSPS-CAS Bilateral Joint Research Projects, 'Control of wall recycling on metallic plasma facing materials in fusion reactor,' 2019–2022, (No. GJHZ201984), US Department of Energy (No. DE-AC02-09CH11466) with Princeton University, the LHD project financial support (Nos. ULPP010, ULFF022) and JSPS KAKENHI (Nos. 17K14426, 20K03896).
More Information
  • Received Date: January 25, 2021
  • Revised Date: April 28, 2021
  • Accepted Date: April 29, 2021
  • An impurity powder dropper was installed in the 21st campaign of the Large Helical Device experiment (Oct. 2019–Feb. 2020) under a collaboration between the National Institute for Fusion Science and the Princeton Plasma Physics Laboratory for the purposes of real-time wall conditioning and edge plasma control. In order to assess the effective injection of the impurity powders, spectroscopic diagnostics were applied to observe line emission from the injected impurity. Thus, extreme-ultraviolet (EUV) and vacuum-ultraviolet (VUV) emission spectra were analyzed to summarize observable impurity lines with B and BN powder injection. Emission lines released from B and N ions were identified in the EUV wavelength range of 5–300 Å measured using two grazing incidence flat-field EUV spectrometers and in the VUV wavelength range of 300–2400 Å measured using three normal incidence 20 cm VUV spectrometers. BI–BV and NIII–NVII emission lines were identified in the discharges with the B and BN powder injection, respectively. Useful B and N emission lines which have large intensities and are isolated from other lines were successfully identified as follows: BI (1825.89, 1826.40) Å (blended), BII 1362.46 Å, BIII (677.00, 677.14, 677.16) Å (blended), BIV 60.31 Å, BV 48.59 Å, NIII (989.79, 991.51, 991.58) Å (blended), NIV 765.15 Å, NV (209.27, 209.31) Å (blended), NVI 1896.80 Å, and NVII 24.78 Å. Applications of the line identifications to the advanced spectroscopic diagnostics were demonstrated, such as the vertical profile measurements for the BV and NVII lines using a space-resolved EUV spectrometer and the ion temperature measurement for the BII line using a normal incidence 3 m VUV spectrometer.
  • [1]
    Bortolon A et al 2020 Nucl. Fusion 60 126010
    [2]
    Bortolon A et al 2019 Nucl. Mater. Energy 19 384
    [3]
    Lunsford R et al 2019 Nucl. Fusion 59 126034
    [4]
    Sun Z et al 2021 Nucl. Fusion 61 014002
    [5]
    Maingi R et al 2018 Nucl. Fusion 58 024003
    [6]
    Nespoli F et al 2020 Nucl. Mater. Energy 25 100842
    [7]
    Takeiri Y et al 2017 Nucl. Fusion 57 102023
    [8]
    Chowdhuri M B, Morita S and Goto M 2008 Appl. Opt. 47 135
    [9]
    Chowdhuri M B et al 2007 Rev. Sci. Instrum. 78 023501
    [10]
    Oishi T et al 2015 Plasma Fusion Res. 10 3402031
    [11]
    Huang X L et al 2014 Rev. Sci. Instrum. 85 043511
    [12]
    Oishi T et al 2014 Appl. Opt. 53 6900
    [13]
    Shoji M et al 2020 Contrib. Plasma Phys. 60 e201900101
    [14]
    Nagy A et al 2018 Rev. Sci. Instrum. 89 10K121
    [15]
    Watanabe K Y et al 2007 Plasma Phys. Control. Fusion 49 605
    [16]
    Kramida A et al 2020 NIST Atomic Spectra Database (ver. 5.8).Available: https://physics.nist.gov/asd [Accessed: 25 December 2020]. National Institute of Standards and Technology https://doi.org/10.18434/T4W30F
    [17]
    Dong C F et al 2010 Rev. Sci. Instrum. 81 033107
    [18]
    Wang E H et al 2012 Rev. Sci. Instrum. 83 043503
    [19]
    Zhang H M et al 2015 Jpn. J. Appl. Phys. 54 086101
    [20]
    Oishi T et al 2019 J. Phys.: Conf. Ser. 1289 012037
    [21]
    Shoji M et al 2020 Nucl. Mater. Energy 25 100853
  • Related Articles

    [1]Hangqi XU, Tao LAN, Min XU, Zhanhui WANG, Lin NIE, Jie WU, Sen ZHANG, Yiming ZU, Yi LIU, Yunbo DONG, Wenzhe MAO, Chen CHEN, Jiaren WU, Pengcheng LU, Tianxiong WANG, Qilong DONG, Yongkang ZHOU, Peng DENG, Xingkang WANG, Zeqi BAI, Yuhua HUANG, Zian WEI, Hai WANG, Xiaohui WEN, Haiyang ZHOU, Chu ZHOU, Ahdi LIU, Zhengwei WU, Jinlin XIE, Hong LI, Chijin XIAO, Weixing DING, Wei CHEN, Wulyu ZHONG, Xuru DUAN, Wandong LIU, Ge ZHUANG. Development of double-foil soft X-ray array imaging (DSXAI) diagnostic on HL-2A tokamak[J]. Plasma Science and Technology, 2025, 27(3): 035103. DOI: 10.1088/2058-6272/ada343
    [2]Yasuhiro SUZUKI (鈴木康浩), Shishir PUROHIT, Satoshi OHDACHI(大舘暁), Satoshi YAMAMOTO (山本聡), Kazunobu NAGASAKI(長崎百伸). New tomographic reconstruction technique based on Laplacian eigenfunction[J]. Plasma Science and Technology, 2020, 22(10): 102002. DOI: 10.1088/2058-6272/aba185
    [3]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [4]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [5]Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf
    [6]R MILLS, J LOTOSKI, Y LU. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels[J]. Plasma Science and Technology, 2017, 19(9): 95001-095001. DOI: 10.1088/2058-6272/aa7383
    [7]ZHU Tuo (朱托), SHANG Wanli (尚万里), ZHANG Wenhai (张文海), YANG Jiamin (杨家敏), et al.. Quantitative Measurement of the Proportions of High-Order Harmonics for the 4B7B Soft-X-Ray Source at Beijing Synchrotron Radiation Facility[J]. Plasma Science and Technology, 2013, 15(12): 1194-1196. DOI: 10.1088/1009-0630/15/12/06
    [8]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16
    [9]ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07
    [10]SHANG Wanli, ZHAO Yang, XIONG Gang, YANG Jiamin, ZHU Tuo. Space-Resolved Spectrum Diagnose by Soft X-Ray Transmission Grating Spectrometer[J]. Plasma Science and Technology, 2011, 13(1): 36-39.
  • Cited by

    Periodical cited type(4)

    1. Gong, S.-B., Zhang, T.-C., Guo, W.-P. et al. Study of the laser propagation characteristics of the vertical Thomson scattering system on HL-3 tokamak | [HL-3 装置垂直汤姆逊散射系统激光传播特性的研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2025, 45(1): 64-68. DOI:10.16568/j.0254-6086.202501011
    2. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    3. Wang, Z.H., Zhang, B., Gong, X.Z. et al. Electron ITB formation in EAST high poloidal beta plasmas under dominant electron heating. Plasma Physics and Controlled Fusion, 2024, 66(6): 065002. DOI:10.1088/1361-6587/ad3c1a
    4. Gong, S.B., Zhang, T.C., Guo, W.P. et al. Edge Thomson scattering diagnostic with compact polychromators on the HL-3 Tokamak. Journal of Instrumentation, 2023, 18(10): C10019. DOI:10.1088/1748-0221/18/10/C10019
    1. Gong, S.-B., Zhang, T.-C., Guo, W.-P. et al. Study of the laser propagation characteristics of the vertical Thomson scattering system on HL-3 tokamak | [HL-3 装置垂直汤姆逊散射系统激光传播特性的研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2025, 45(1): 64-68. DOI:10.16568/j.0254-6086.202501011
    2. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    3. Wang, Z.H., Zhang, B., Gong, X.Z. et al. Electron ITB formation in EAST high poloidal beta plasmas under dominant electron heating. Plasma Physics and Controlled Fusion, 2024, 66(6): 065002. DOI:10.1088/1361-6587/ad3c1a
    4. Gong, S.B., Zhang, T.C., Guo, W.P. et al. Edge Thomson scattering diagnostic with compact polychromators on the HL-3 Tokamak. Journal of Instrumentation, 2023, 18(10): C10019. DOI:10.1088/1748-0221/18/10/C10019

    Other cited types(0)

Catalog

    Article views (154) PDF downloads (176) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return