Advanced Search+
Jing LI (李晶), Haiquan LU (陆海全), Qi WANG (汪琦), Guojian LI (李国建), Shuiliang YAO (姚水良), Zuliang WU (吴祖良). Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls[J]. Plasma Science and Technology, 2021, 23(7): 75505-075505. DOI: 10.1088/2058-6272/abffaa
Citation: Jing LI (李晶), Haiquan LU (陆海全), Qi WANG (汪琦), Guojian LI (李国建), Shuiliang YAO (姚水良), Zuliang WU (吴祖良). Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls[J]. Plasma Science and Technology, 2021, 23(7): 75505-075505. DOI: 10.1088/2058-6272/abffaa

Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls

Funds: This project was funded by the Open Foundation of Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province (No. ZZP1902).
More Information
  • Received Date: January 23, 2021
  • Revised Date: May 06, 2021
  • Accepted Date: May 09, 2021
  • Ultrafine particles (UFPs) are harmful to human beings, and their effective removal from the environment is an urgent necessity. In this study, a dielectric barrier discharge (DBD) reactor packed with porous alumina (PA) balls driven by a pulse power supply was developed to remove the UFPs (ranging from 20 to 100 nm) from the exhaust gases of kerosene combustion. Five types of DBD reactors were established to evaluate the effect of plasma catalysis on the removal efficiency of UFPs. The influences of gas flow rate, peak voltage and pulse frequency of different reactors on UFPs removal were investigated. It was found that a high total UFP removal of 91.4% can be achieved in the DBD reactor entirely packed with PA balls. The results can be attributed to the enhanced charge effect of the UFPs with PA balls in the discharge space. The UFP removals by diffusion deposition and electrostatic attraction were further calculated, indicating that particle charging is vital to achieve high removal efficiency for UFPs.
  • [1]
    Oliveira J R C et al 2019 Paediatr. Respir. Rev. 32 73
    [2]
    Deng Q et al 2019 Environ. Res. 169 237
    [3]
    Ohlwein S et al 2019 Int. J. Public Health 64 547
    [4]
    Sajani S Z et al 2015 Atmos. Environ. 103 307
    [5]
    Daher N et al 2010 Atmos. Environ. 44 8
    [6]
    Mertens J et al 2020 Atmos. Pollut. Res. 11 803
    [7]
    Lv W et al 2018 J. Clean. Prod. 201 382
    [8]
    Zhang Y et al 2019 J. Clean. Prod. 225 627
    [9]
    Gu L et al 2017 Plasma Sci. Technol. 19 115503
    [10]
    Mizeraczyk J and Berendt A 2018 Plasma Sci. Technol. 20 054020
    [11]
    Samal S 2017 J. Clean. Prod. 142 3131
    [12]
    Shi Y et al 2020 Plasma Sci. Technol. 22 015504
    [13]
    Cao R et al 2017 J. Clean. Prod. 161 1459
    [14]
    Lizarraga L et al 2011 Environ. Sci. Technol. 45 10591
    [15]
    Choi S, Oh K C and Lee C B 2014 Energy 77 327
    [16]
    Herner J D et al 2011 Environ. Sci. Technol. 45 2413
    [17]
    Ma X Y D et al 2019 Polymer 179 121649
    [18]
    Lin K et al 2020 Process. Saf. Environ. Prot. 137 73
    [19]
    Ardkapan S R et al 2014 J. Aerosol Sci. 72 14
    [20]
    Gu G Q et al 2018 Nano Res. 11 4090
    [21]
    Jung S, Gersten B T and Biswas P 2020 Aerosol Air Qual. Res.20 489
    [22]
    Zhuang Y et al 2000 J. Electrostat. 48 245
    [23]
    Yang Z et al 2018 Fuel Process. Technol. 180 122
    [24]
    Byeon J H et al 2006 J. Aerosol Sci. 37 1618
    [25]
    Lee B U, Yermakov M and Grinshpun S A 2004 Atmos.Environ. 38 4815
    [26]
    Waring M S, Siegel J A and Corsi R L 2008 Atmos. Environ.42 5003
    [27]
    Jidenko N and Borra J P 2012 J. Hazard. Mater. 235–236 237
    [28]
    Choi J et al 2016 J. Hazard. Mater. 303 48
    [29]
    Ma C et al 2016 Appl. Therm. Eng. 99 1110
    [30]
    Gu L et al 2017 Plasma Chem. Plasma Process 37 1193
    [31]
    Ji L et al 2020 Environ. Sci. Technol. 54 2510
    [32]
    Babaie M et al 2015 Chem. Eng. J. 276 240
    [33]
    Li J, Wu Z and Yao S 2020 J. Phys. D: Appl. Phys. 53 385201
    [34]
    Assadi A A et al 2017 Chem. Eng. Process. 111 1
    [35]
    Assadi A A et al 2016 Chem. Eng. Res. Des. 106 308
    [36]
    Assadi A A et al 2018 J. Hazard. Mater. 357 305
    [37]
    Costa G et al 2017 Chem. Eng. J. 307 785
    [38]
    Jin Q et al 2016 Chem. Eng. J. 286 300
    [39]
    Mao L et al 2018 J. Hazard. Mater. 347 150
    [40]
    Yao S et al 2018 Ind. Eng. Chem. Res. 57 1159
    [41]
    Yao S et al 2016 Guangzhou Chem. Ind. 44 127
    [42]
    Coury J R, Thambimuthu K V and Clift R 1987 Powder Technol. 50 253
    [43]
    Tardos G I, Gutfinger C and Abuaf N 1976 AIChE J 22 1147
    [44]
    Kim J H et al 2005 J. Res. Natl. Inst. Stand. Technol. 110 31
    [45]
    Xi J F et al 2020 Powder Technol. 368 105
    [46]
    Shapiro M, Laufer G and Gutfinger C 1986 Aerosol Sci. Tech.5 435
    [47]
    Thomas D et al 2013 J. Aerosol Sci. 57 32
    [48]
    Alguacil F J and Alonso M 2006 Aerosol Sci. 37 875
  • Related Articles

    [1]Boqiong JIANG (江博琼), Xiaodan FEI (费小丹), Shuiliang YAO (姚水良), Qinmin WANG (王钦民), Xinlei YAO (姚馨蕾), Kai XU (徐锴), Zhizong CHEN (陈挚宗). Decomposition of a gas mixture of four n-alkanes using a DBD reactor[J]. Plasma Science and Technology, 2020, 22(11): 115501. DOI: 10.1088/2058-6272/aba2c3
    [2]Shida XU (胥世达), Di JIN (金迪), Feilong SONG (宋飞龙), Yun WU (吴云). Experimental investigation on n-decane plasma cracking in an atmospheric-pressure argon environment[J]. Plasma Science and Technology, 2019, 21(8): 85503-085503. DOI: 10.1088/2058-6272/ab104e
    [3]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [4]Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
    [5]Tao YANG (杨涛), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Jiao LI (李娇), Pan CHEN (陈攀), Yongxiang YIN (印永祥). Understanding CO2 decomposition by thermal plasma with supersonic expansion quench[J]. Plasma Science and Technology, 2018, 20(6): 65502-065502. DOI: 10.1088/2058-6272/aaa969
    [6]Yanqin LI (李艳琴), Xiuling ZHANG (张秀玲), Lanbo DI (底兰波). Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma[J]. Plasma Science and Technology, 2018, 20(1): 14012-014012. DOI: 10.1088/2058-6272/aa8c6d
    [7]Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c
    [8]MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17
    [9]Jee-Hun KO, Sooseok CHOI, Hyun-Woo PARK, Dong-Wha PARK. Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma[J]. Plasma Science and Technology, 2013, 15(9): 923-927. DOI: 10.1088/1009-0630/15/9/17
    [10]Takayuki WATANABE, NARENGERILE. Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(4): 357-361. DOI: 10.1088/1009-0630/15/4/09

Catalog

    Article views (82) PDF downloads (83) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return