Citation: | Jing LI (李晶), Haiquan LU (陆海全), Qi WANG (汪琦), Guojian LI (李国建), Shuiliang YAO (姚水良), Zuliang WU (吴祖良). Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls[J]. Plasma Science and Technology, 2021, 23(7): 75505-075505. DOI: 10.1088/2058-6272/abffaa |
[1] |
Oliveira J R C et al 2019 Paediatr. Respir. Rev. 32 73
|
[2] |
Deng Q et al 2019 Environ. Res. 169 237
|
[3] |
Ohlwein S et al 2019 Int. J. Public Health 64 547
|
[4] |
Sajani S Z et al 2015 Atmos. Environ. 103 307
|
[5] |
Daher N et al 2010 Atmos. Environ. 44 8
|
[6] |
Mertens J et al 2020 Atmos. Pollut. Res. 11 803
|
[7] |
Lv W et al 2018 J. Clean. Prod. 201 382
|
[8] |
Zhang Y et al 2019 J. Clean. Prod. 225 627
|
[9] |
Gu L et al 2017 Plasma Sci. Technol. 19 115503
|
[10] |
Mizeraczyk J and Berendt A 2018 Plasma Sci. Technol. 20 054020
|
[11] |
Samal S 2017 J. Clean. Prod. 142 3131
|
[12] |
Shi Y et al 2020 Plasma Sci. Technol. 22 015504
|
[13] |
Cao R et al 2017 J. Clean. Prod. 161 1459
|
[14] |
Lizarraga L et al 2011 Environ. Sci. Technol. 45 10591
|
[15] |
Choi S, Oh K C and Lee C B 2014 Energy 77 327
|
[16] |
Herner J D et al 2011 Environ. Sci. Technol. 45 2413
|
[17] |
Ma X Y D et al 2019 Polymer 179 121649
|
[18] |
Lin K et al 2020 Process. Saf. Environ. Prot. 137 73
|
[19] |
Ardkapan S R et al 2014 J. Aerosol Sci. 72 14
|
[20] |
Gu G Q et al 2018 Nano Res. 11 4090
|
[21] |
Jung S, Gersten B T and Biswas P 2020 Aerosol Air Qual. Res.20 489
|
[22] |
Zhuang Y et al 2000 J. Electrostat. 48 245
|
[23] |
Yang Z et al 2018 Fuel Process. Technol. 180 122
|
[24] |
Byeon J H et al 2006 J. Aerosol Sci. 37 1618
|
[25] |
Lee B U, Yermakov M and Grinshpun S A 2004 Atmos.Environ. 38 4815
|
[26] |
Waring M S, Siegel J A and Corsi R L 2008 Atmos. Environ.42 5003
|
[27] |
Jidenko N and Borra J P 2012 J. Hazard. Mater. 235–236 237
|
[28] |
Choi J et al 2016 J. Hazard. Mater. 303 48
|
[29] |
Ma C et al 2016 Appl. Therm. Eng. 99 1110
|
[30] |
Gu L et al 2017 Plasma Chem. Plasma Process 37 1193
|
[31] |
Ji L et al 2020 Environ. Sci. Technol. 54 2510
|
[32] |
Babaie M et al 2015 Chem. Eng. J. 276 240
|
[33] |
Li J, Wu Z and Yao S 2020 J. Phys. D: Appl. Phys. 53 385201
|
[34] |
Assadi A A et al 2017 Chem. Eng. Process. 111 1
|
[35] |
Assadi A A et al 2016 Chem. Eng. Res. Des. 106 308
|
[36] |
Assadi A A et al 2018 J. Hazard. Mater. 357 305
|
[37] |
Costa G et al 2017 Chem. Eng. J. 307 785
|
[38] |
Jin Q et al 2016 Chem. Eng. J. 286 300
|
[39] |
Mao L et al 2018 J. Hazard. Mater. 347 150
|
[40] |
Yao S et al 2018 Ind. Eng. Chem. Res. 57 1159
|
[41] |
Yao S et al 2016 Guangzhou Chem. Ind. 44 127
|
[42] |
Coury J R, Thambimuthu K V and Clift R 1987 Powder Technol. 50 253
|
[43] |
Tardos G I, Gutfinger C and Abuaf N 1976 AIChE J 22 1147
|
[44] |
Kim J H et al 2005 J. Res. Natl. Inst. Stand. Technol. 110 31
|
[45] |
Xi J F et al 2020 Powder Technol. 368 105
|
[46] |
Shapiro M, Laufer G and Gutfinger C 1986 Aerosol Sci. Tech.5 435
|
[47] |
Thomas D et al 2013 J. Aerosol Sci. 57 32
|
[48] |
Alguacil F J and Alonso M 2006 Aerosol Sci. 37 875
|
[1] | Boqiong JIANG (江博琼), Xiaodan FEI (费小丹), Shuiliang YAO (姚水良), Qinmin WANG (王钦民), Xinlei YAO (姚馨蕾), Kai XU (徐锴), Zhizong CHEN (陈挚宗). Decomposition of a gas mixture of four n-alkanes using a DBD reactor[J]. Plasma Science and Technology, 2020, 22(11): 115501. DOI: 10.1088/2058-6272/aba2c3 |
[2] | Shida XU (胥世达), Di JIN (金迪), Feilong SONG (宋飞龙), Yun WU (吴云). Experimental investigation on n-decane plasma cracking in an atmospheric-pressure argon environment[J]. Plasma Science and Technology, 2019, 21(8): 85503-085503. DOI: 10.1088/2058-6272/ab104e |
[3] | J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba |
[4] | Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6 |
[5] | Tao YANG (杨涛), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Jiao LI (李娇), Pan CHEN (陈攀), Yongxiang YIN (印永祥). Understanding CO2 decomposition by thermal plasma with supersonic expansion quench[J]. Plasma Science and Technology, 2018, 20(6): 65502-065502. DOI: 10.1088/2058-6272/aaa969 |
[6] | Yanqin LI (李艳琴), Xiuling ZHANG (张秀玲), Lanbo DI (底兰波). Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma[J]. Plasma Science and Technology, 2018, 20(1): 14012-014012. DOI: 10.1088/2058-6272/aa8c6d |
[7] | Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c |
[8] | MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17 |
[9] | Jee-Hun KO, Sooseok CHOI, Hyun-Woo PARK, Dong-Wha PARK. Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma[J]. Plasma Science and Technology, 2013, 15(9): 923-927. DOI: 10.1088/1009-0630/15/9/17 |
[10] | Takayuki WATANABE, NARENGERILE. Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(4): 357-361. DOI: 10.1088/1009-0630/15/4/09 |