Advanced Search+
Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c
Citation: Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c

High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor

More Information
  • Dielectric barrier discharge (DBD) is utilized to decompose xylene vapor in mobile gas under normal atmospheric pressure. The plasma is generated by an AC power source with a frequency of 6 kHz. In the experiment, the discharge power on the DBD reactor was calculated by a Lissajous figure, and the specific input energy (SIE) of different discharge voltage or residence time was obtained. The concentrations of xylene, carbon monoxide and carbon dioxide in the gas were analyzed by gas chromatography. The spectra of DBD were diagnosed using a spectrometer. We calculated the conversion rate (CR), mineralization rate (MR) and carbon dioxide selectivity. The relationship between these quantities and the SIE was analyzed. The experimental results show that high concentration xylene can be decomposed mostly by DBD plasma. The CR can reach as high as 90% with the main product of carbon dioxide.
  • Related Articles

    [1]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [2]Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
    [3]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [4]Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd
    [5]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [6]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [7]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [8]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [9]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [10]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
  • Cited by

    Periodical cited type(8)

    1. Xiao, W., Li, Y., Zhang, Y. et al. Recent Development of Fibrous Materials for Electrocatalytic Water Splitting. Applied Energy, 2025. DOI:10.1016/j.apenergy.2025.125809
    2. Wang, S., Wang, Y., Gao, M. et al. Aging Effect of Plasma-Treated Carbon Fiber Surface: From an Engineering Point. Coatings, 2024, 14(1): 80. DOI:10.3390/coatings14010080
    3. Li, J., Yuan, L., Wu, Z. et al. Synergetic surface modification of 3D braided carbon fiber-reinforced composites for enhancing mechanical strength. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.158189
    4. Sowmya, S., Vijaikanth, V. g-C3N4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS Omega, 2023, 8(36): 32940-32954. DOI:10.1021/acsomega.3c04347
    5. Rashed, A.O., Huynh, C., Merenda, A. et al. Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121475
    6. Jiang, J., Jin, B., Meng, L. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction | [基于电催化析氧反应的非贵金属催化剂研究进展]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380. DOI:10.13801/j.cnki.fhclxb.20220819.001
    7. Xu, J., Zhang, Y.-Q., Zhu, X.-B. et al. Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering | [利用缺陷工程提高碳毡电极对钒离子的氧化还原催化活性]. Journal of Central South University, 2022, 29(9): 2956-2967. DOI:10.1007/s11771-022-5129-z
    8. Mei, T., Gao, M., Wang, Y. et al. Effects of acid treatment and plasma micromachining on the surface properties of carbon fibers. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153261

    Other cited types(0)

Catalog

    Article views (328) PDF downloads (820) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return