Citation: | Riaz KHAN, Sehrish SHAKIR, Ahmad ALI, Muhammad Khawar AYUB, Moazzam NAZIR, Zia UR-REHMAN, Abdul QAYYUM, Muhammad Athar NAVEED, Sarfraz AHMAD, Zahoor AHMAD, Rafaqat ALI, Shahid HUSSAIN. Microwave-assisted pre-ionization experiments on GLAST-III[J]. Plasma Science and Technology, 2021, 23(8): 85102-085102. DOI: 10.1088/2058-6272/ac050c |
[1] |
Hogeweij G M D et al 1996 Phys. Rev. Lett. 76 632
|
[2] |
Bornatici M et al 1983 Nucl. Fusion 23 1153
|
[3] |
Piliya A D and Fedorov V I 1987 Rev. Plasma Phys. 13 335
|
[4] |
Cirant S et al 2008 Fusion Sci. Technol. 53 174
|
[5] |
Erckmann V and Gasparino U 1994 Plasma Phys. Control.Fusion 36 1869
|
[6] |
Lee G S et al 2000 Nucl. Fusion 40 575
|
[7] |
Fujita T et al 2007 Nucl. Fusion 47 1512
|
[8] |
Gribov Y et al 2007 Nucl. Fusion 47 S385
|
[9] |
Kajiwara K et al 2005 Nucl. Fusion 45 694
|
[10] |
Jackson G L et al 2007 Nucl. Fusion 47 257
|
[11] |
Jackson G L et al 2010 Phys. Plasmas 17 056116
|
[12] |
Borshchegovskiy A et al 2012 Eur. Phys. J. Web of Conferences 32 02004
|
[13] |
Bucalossi J et al 2008 Nucl. Fusion 48 054005
|
[14] |
Lloyd B et al 1991 Nucl. Fusion 31 2031
|
[15] |
Holly D J et al 1981 Nucl. Fusion 21 1483
|
[16] |
Stix T H 1962 The Theory of Plasma Waves (New York:McGraw-Hill)
|
[17] |
Bellan P M 2008 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press)
|
[18] |
Whaley D R et al 1992 Nucl. Fusion 32 757
|
[19] |
Tanaka S et al 1993 Nucl. Fusion 33 505
|
[20] |
Kulchar A G et al 1984 Phys. Fluids 27 1869
|
[21] |
Bae Y S et al 2009 Nucl. Fusion 49 022001
|
[22] |
Gryaznevixch M, Shevchenko V and Sykes A 2006 Nucl.Fusion 46 S573
|
[23] |
Prater R 2004 Phys. Plasmas 11 2349
|
[24] |
Cheo W et al 2000 Rev. Sci. Instrum. 71 2728
|
[25] |
He Y X et al 2006 Plasma Sci. Technol. 8 84
|
[26] |
Tan Y et al 2011 Nucl. Fusion 51 063021
|
[27] |
Maekawa T et al 2005 Nucl. Fusion 45 1439
|
[28] |
Jo J G et al 2017 Phys. Plasmas 24 012103
|
[29] |
Hussain S et al 2017 Plasma Sci. Technol. 19 085103
|
[30] |
Ahmad Z et al 2017 Phys. Scr. 92 045601
|
[31] |
Khan R et al 2018 Fusion Eng. Des. 126 10
|
[32] |
Lobbia R B and Gallimore A D 2010 Rev. Sci. Instrum. 81 073503
|
[33] |
Mirzaei H R, Amrollahi R and Ghasemi M 2020 Fusion Eng.Des. 150 111362
|
[34] |
Qayyum A et al 2013 Rev. Sci. Instrum. 84 123502
|
[35] |
Qin Y W 2005 Rev. Sci. Instrum. 76 116102
|
[36] |
Yu Y et al 2018 AIP Adv. 8 095015
|
[1] | Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd |
[2] | Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb |
[3] | WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06 |
[4] | ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20 |
[5] | CHEN Hongyun (陈虹运), GOU Li (芶立). Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD[J]. Plasma Science and Technology, 2015, 17(12): 1038-1042. DOI: 10.1088/1009-0630/17/12/10 |
[6] | LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11 |
[7] | Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18 |
[8] | Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01 |
[9] | SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07 |
[10] | LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479. |
1. | Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c |
2. | Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910 |
3. | Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3 |
4. | Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372 |
5. | Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022 |
6. | Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b |
7. | Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692 |
8. | Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022 |
9. | Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656 |
10. | Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4 |
11. | Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b |
12. | Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5 |