Advanced Search+
Xiyuan CAI(蔡喜元), Sai TAN(谭赛), Junyong LU(鲁军勇), Xiao ZHANG(张晓), Yun GUO(郭赟). Research on active arc-ignition technology as a possible residual-energy-release strategy in electromagnetic rail launch[J]. Plasma Science and Technology, 2021, 23(8): 85508-085508. DOI: 10.1088/2058-6272/ac0968
Citation: Xiyuan CAI(蔡喜元), Sai TAN(谭赛), Junyong LU(鲁军勇), Xiao ZHANG(张晓), Yun GUO(郭赟). Research on active arc-ignition technology as a possible residual-energy-release strategy in electromagnetic rail launch[J]. Plasma Science and Technology, 2021, 23(8): 85508-085508. DOI: 10.1088/2058-6272/ac0968

Research on active arc-ignition technology as a possible residual-energy-release strategy in electromagnetic rail launch

Funds: This work was supported in part by National Natural Science Foundation of China (Nos. 51522706, 51877214 and 51607187) and in part by the National Basic Research Program of China (973 Program) (No. 613262).
More Information
  • Received Date: March 31, 2021
  • Revised Date: June 06, 2021
  • Accepted Date: June 07, 2021
  • In order to solve the problem of the original residual energy release strategy being unsuitable for high-energy and fast-firing electromagnetic rail launch, this work has explored the applicability of active arc-ignition technology (AAT). The results obtained from the comparison of launching experiments show that AAT has no influence on the acceleration of the armature and is capable of quickly releasing the residual energy. Based on the theory of magnetohydrodynamics, this work has also made numerical simulation of the muzzle arc, analyzed the influence of AAT on the muzzle arc flow field, electromagnetic (EM) field and temperature field, and evaluated the performance of AAT according to the projectile initial disturbance, the EM impact on guidance devices and the rail ablation. The results show that AAT is now one of the most practicable strategies for residual energy release.
  • [1]
    Lou Y T et al 2016 IEEE Trans. Plasma Sci. 44 857
    [2]
    Hogg J 2017 IEEE Trans. Plasma Sci. 45 1069
    [3]
    Mcnab I R and Wolfe T R 2015 Electromagnetic launch to space Proc.13th Reinventing Space Conf. (Cham: Springer) (https://doi.org/10.1007/978-3-319-32817-1_26)
    [4]
    Bernardes J S, Lacava G P and Schrader M J 2002 Analysis of a railgun capacitor-muzzle-shunt energy recovery scheme 25th Int. Power Modulator Symp. and 2002 High-Voltage Workshop Hollywood IEEE Xplore (https://doi.org/10.1109/MODSYM.2002.1189486)
    [5]
    Jamison K A and Littrell D M 1995 IEEE Trans. Magn. 31 168
    [6]
    Parker J V 1991 IEEE Trans. Magn. 27 80
    [7]
    Tang B, Xu Y T and Li B M 2016 J. Ball 28 62 (in Chinese)
    [8]
    Lu J Y et al 2019 IEEE Trans. Plasma Sci. 47 2228
    [9]
    Weimer J J and Singer I L 2011 IEEE Trans. Plasma Sci. 39 174
    [10]
    Gleizes A 2015 Plasma Chem. Plasma Process 35 455
    [11]
    Gao Y et al 2020 Def. Technol. 16 802
    [12]
    Bini R, Basse N T and Seeger M 2011 J. Phys. D: Appl. Phys.44 025203
    [13]
    Zhou Q H et al 2008 J. Phys. D: Appl. Phys. 42 015210
    [14]
    Murphy A B 1995 Plasma Chem. Plasma Process 15 279
    [15]
    Murphy A B 2012 Chem. Phys. 398 64
    [16]
    Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001
    [17]
    Cram E L 1985 J. Phys. D: Appl. Phys. 18 401
    [18]
    Ernst K A, Kopainsky J G and Maecker H H 1973 IEEE Trans.Plasma Sci. 1 3
    [19]
    Essoltani A et al 1994 Plasma Chem. Plasma Process 14 437
    [20]
    Simonyan L M and Kats Y L 2018 Russ. Metall. 2018 1147
    [21]
    Wu M L et al 2016 Phys. Plasmas 23 042306
  • Related Articles

    [1]Mingqiu DAI (戴明秋), Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Juan LIU (刘娟), Xiaolei BI (毕晓蕾). Experimental investigation on ablation characteristics of coated and uncoated steel under 30/80 μs impulse current[J]. Plasma Science and Technology, 2019, 21(7): 75501-075501. DOI: 10.1088/2058-6272/ab1037
    [2]Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
    [3]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [4]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [5]CHEN Tang (陈瑭), LI Hui (李辉), BAI Bing (白冰), LIAO Mengran (廖梦然), XIA Weidong (夏维东). Parametric Study on Arc Behavior of Magnetically Diffused Arc[J]. Plasma Science and Technology, 2016, 18(1): 6-11. DOI: 10.1088/1009-0630/18/1/02
    [6]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [7]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09
    [8]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
    [9]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
    [10]XIU Shixin (修士新), YE Zhaoping (叶兆平), LI Quan (李泉). Influce of Initial Opening Speed on Characteristics of a Drawn Vacuum Arc[J]. Plasma Science and Technology, 2011, 13(3): 376-380.
  • Cited by

    Periodical cited type(7)

    1. Lin, Y., Wang, X., Zhou, H. et al. Surface damage mechanism and evolution of Al-Zn-Mg-Cu alloy as a sliding electrical contact material under extreme environments. Wear, 2025. DOI:10.1016/j.wear.2025.205995
    2. Wang, M., Wang, Q., Wang, J. et al. Research on Muzzle Arc in Ultra High Speed Air Flow. 2024.
    3. Yu, Y.L., Chen, Z.Y., Xia, S.G. et al. Design an arc suppression system for the Electromagnetic Pellet Injection System. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2023.114100
    4. Beilis, I.I.. Magnetoplasmadynamic acceleration of solid body in a railgun. Journal of Electric Propulsion, 2023, 2(1): 15. DOI:10.1007/s44205-023-00050-1
    5. Beilis, I.I.. Plasma Energy Loss by Cathode Heat Conduction in a Vacuum Arc: Cathode Effective Voltage. Plasma, 2023, 6(3): 492-502. DOI:10.3390/plasma6030034
    6. Beilis, I.I.. Electrodynamic Acceleration of a Dielectric Body by Arc Plasma in a System of Railgun Configuration. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2023. DOI:10.23919/ISDEIV55268.2023.10199638
    7. Wang, X., Li, Y., Shi, Z. et al. Research on Vehicle-Mounted Electromagnetic Ejection Remote Fire Extinguishing System. Mathematical Problems in Engineering, 2022. DOI:10.1155/2022/2129942

    Other cited types(0)

Catalog

    Article views (112) PDF downloads (108) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return