Citation: | Xiyuan CAI(蔡喜元), Sai TAN(谭赛), Junyong LU(鲁军勇), Xiao ZHANG(张晓), Yun GUO(郭赟). Research on active arc-ignition technology as a possible residual-energy-release strategy in electromagnetic rail launch[J]. Plasma Science and Technology, 2021, 23(8): 85508-085508. DOI: 10.1088/2058-6272/ac0968 |
[1] |
Lou Y T et al 2016 IEEE Trans. Plasma Sci. 44 857
|
[2] |
Hogg J 2017 IEEE Trans. Plasma Sci. 45 1069
|
[3] |
Mcnab I R and Wolfe T R 2015 Electromagnetic launch to space Proc.13th Reinventing Space Conf. (Cham: Springer) (https://doi.org/10.1007/978-3-319-32817-1_26)
|
[4] |
Bernardes J S, Lacava G P and Schrader M J 2002 Analysis of a railgun capacitor-muzzle-shunt energy recovery scheme 25th Int. Power Modulator Symp. and 2002 High-Voltage Workshop Hollywood IEEE Xplore (https://doi.org/10.1109/MODSYM.2002.1189486)
|
[5] |
Jamison K A and Littrell D M 1995 IEEE Trans. Magn. 31 168
|
[6] |
Parker J V 1991 IEEE Trans. Magn. 27 80
|
[7] |
Tang B, Xu Y T and Li B M 2016 J. Ball 28 62 (in Chinese)
|
[8] |
Lu J Y et al 2019 IEEE Trans. Plasma Sci. 47 2228
|
[9] |
Weimer J J and Singer I L 2011 IEEE Trans. Plasma Sci. 39 174
|
[10] |
Gleizes A 2015 Plasma Chem. Plasma Process 35 455
|
[11] |
Gao Y et al 2020 Def. Technol. 16 802
|
[12] |
Bini R, Basse N T and Seeger M 2011 J. Phys. D: Appl. Phys.44 025203
|
[13] |
Zhou Q H et al 2008 J. Phys. D: Appl. Phys. 42 015210
|
[14] |
Murphy A B 1995 Plasma Chem. Plasma Process 15 279
|
[15] |
Murphy A B 2012 Chem. Phys. 398 64
|
[16] |
Murphy A B 2010 J. Phys. D: Appl. Phys. 43 434001
|
[17] |
Cram E L 1985 J. Phys. D: Appl. Phys. 18 401
|
[18] |
Ernst K A, Kopainsky J G and Maecker H H 1973 IEEE Trans.Plasma Sci. 1 3
|
[19] |
Essoltani A et al 1994 Plasma Chem. Plasma Process 14 437
|
[20] |
Simonyan L M and Kats Y L 2018 Russ. Metall. 2018 1147
|
[21] |
Wu M L et al 2016 Phys. Plasmas 23 042306
|
[1] | Feng WANG, Jiquan LI, Hongpeng QU, Xiaodong PENG. Gyrokinetic simulation of magnetic-island-induced electric potential vortex mode[J]. Plasma Science and Technology, 2024, 26(1): 015103. DOI: 10.1088/2058-6272/ad0d57 |
[2] | Bei LIU, Hua LIANG, Borui ZHENG. Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing[J]. Plasma Science and Technology, 2023, 25(1): 015503. DOI: 10.1088/2058-6272/ac7cb8 |
[3] | Chaoxing DAI (戴超星), Chao SONG (宋超), Xue GUO (郭雪), Wentao SUN (孙文涛), Zhiqiang GUO (郭志强), Fucheng LIU (刘富成), Yafeng HE (贺亚峰). Rotation of dust vortex in a metal saw structure in dusty plasma[J]. Plasma Science and Technology, 2020, 22(3): 34008-034008. DOI: 10.1088/2058-6272/ab580b |
[4] | Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0 |
[5] | Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95 |
[6] | Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504 |
[7] | R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10 |
[8] | LIU Xiaodong(刘晓东), FU Bao(付豹), ZHUANG Ming(庄明). The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution[J]. Plasma Science and Technology, 2014, 16(3): 288-293. DOI: 10.1088/1009-0630/16/3/21 |
[9] | ZHENG Borui (郑博睿), GAO Chao (高超), LI Yibin (李一滨), LIU Feng (刘锋), LUO Shijun (罗时钧). Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation[J]. Plasma Science and Technology, 2013, 15(4): 350-356. DOI: 10.1088/1009-0630/15/4/08 |
[10] | ZHENG Borui (郑博睿), GAO Chao(高超), LI Yibin(李一滨), LIU Feng(刘峰), LUO Shijun(罗时钧. Flow Control over a Conical Forebody by Duty-Cycle Actuations[J]. Plasma Science and Technology, 2012, 14(1): 58-63. DOI: 10.1088/1009-0630/14/1/13 |
1. | Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0 |
2. | Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476 |
3. | Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174 |
4. | ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003 |
5. | Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003 |