Citation: | Xiaojuan WANG, Zhanghu HU, Younian WANG. Multi-layer structure formation of relativistic electron beams in plasmas[J]. Plasma Science and Technology, 2022, 24(2): 025001. DOI: 10.1088/2058-6272/ac4155 |
A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas. We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail. Meanwhile, the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space. The influences of beam parameters (beam radius and transverse density profile) on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.
This work is supported by National Natural Science Foundation of China (Nos. 12 075 046 and 11 775 042).
[1] |
Drake R P 2006 High-Energy-Density Physics (Berlin: Springer)
|
[2] |
Tabak M et al 1994 Phys. Plasmas 1 1626 doi: 10.1063/1.870664
|
[3] |
Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 doi: 10.1103/PhysRevLett.43.267
|
[4] |
Chen P et al 1985 Phys. Rev. Lett. 54 693 doi: 10.1103/PhysRevLett.54.693
|
[5] |
Joshi C, Corde S and Mori W B 2020 Phys. Plasmas 27 070602 doi: 10.1063/5.0004039
|
[6] |
Lindstrøm C et al 2021 Phys. Rev. Lett. 126 014801 doi: 10.1103/PhysRevLett.126.014801
|
[7] |
Roussel R et al 2020 Phys. Rev. Lett. 124 044802 doi: 10.1103/PhysRevLett.124.044802
|
[8] |
Lu W et al 2006 Phys. Rev. Lett. 96 165002 doi: 10.1103/PhysRevLett.96.165002
|
[9] |
Gonsalves A J et al 2019 Phys. Rev. Lett. 122 084801 doi: 10.1103/PhysRevLett.122.084801
|
[10] |
Romeo S, Ferrario M and Rossi A R 2020 Phys. Rev. Accel. Beams 23 071301 doi: 10.1103/PhysRevAccelBeams.23.071301
|
[11] |
Hogan M J et al 2005 Phys. Rev. Lett. 95 054802 doi: 10.1103/PhysRevLett.95.054802
|
[12] |
Rosenzweig J B et al 1991 Phys. Rev. A 44 R6189 doi: 10.1103/PhysRevA.44.R6189
|
[13] |
Jakobsson O et al 2019 Plasma Phys. Control. Fusion 61 124002 doi: 10.1088/1361-6587/ab4cfb
|
[14] |
Wu H C et al 2010 Phys. Rev. Accel. Beams 13 101303 doi: 10.1103/PhysRevSTAB.13.101303
|
[15] |
Bonatto A et al 2020 J. Phys. : Conf. Ser. 1596 012058 doi: 10.1088/1742-6596/1596/1/012058
|
[16] |
Xia G X et al 2020 Instruments 4 10 doi: 10.3390/instruments4020010
|
[17] |
Hogan M J 2016 Rev. Accel. Sci. Technol. 9 63 doi: 10.1142/S1793626816300036
|
[18] |
Bonatto A et al 2015 Phys. Plasmas 22 083106 doi: 10.1063/1.4928379
|
[19] |
Chou S et al 2016 Phys. Rev. Lett. 117 144801 doi: 10.1103/PhysRevLett.117.144801
|
[20] |
Hu Z H and Wang Y N 2015 Plasma Phys. Control. Fusion 57 095003 doi: 10.1088/0741-3335/57/9/095003
|
[21] |
Hu Z H, Song Y H and Wang Y N 2012 Phys. Rev. E 85 016402 doi: 10.1103/PhysRevE.85.016402
|
[22] |
Hu Z H et al 2020 Phys. Plasmas 27 023103 doi: 10.1063/1.5126256
|
[23] |
Lee S et al 2001 Phys. Rev. E 64 045501 doi: 10.1103/PhysRevE.64.045501
|
[24] |
Lee S et al 2000 Phys. Rev. E 61 7014 doi: 10.1103/PhysRevE.61.7014
|
[25] |
Shpakov V et al 2019 Phys. Rev. Lett. 122 114801 doi: 10.1103/PhysRevLett.122.114801
|
[1] | Min ZHU, Shengyu HU, Yinghao ZHANG, Shuqun WU, Chaohai ZHANG. Plasma propagation in single-particle packed dielectric barrier discharges: joint effects of particle shape and discharge gap[J]. Plasma Science and Technology, 2022, 24(6): 065401. DOI: 10.1088/2058-6272/ac5974 |
[2] | Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50 |
[3] | Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6 |
[4] | Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a |
[5] | Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced |
[6] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11 |
[7] | HU Jian (胡健), JIANG Nan (姜楠), LI Jie (李杰), SHANG Kefeng (商克峰), LU Na (鲁娜), WU Yan (吴彦), MIZUNO Akira (水野障). Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power[J]. Plasma Science and Technology, 2016, 18(3): 254-258. DOI: 10.1088/1009-0630/18/3/07 |
[8] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[9] | QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13 |
[10] | Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11 |