Citation: | Kaiyue WU, Na ZHAO, Qiming NIU, Jiacun WU, Shuai ZHOU, Pengying JIA, Xuechen LI. Various concentric-ring patterns formed in a water-anode glow discharge operated at atmospheric pressure[J]. Plasma Science and Technology, 2022, 24(5): 055405. DOI: 10.1088/2058-6272/ac48e1 |
Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge. Up to now, concentric-ring patterns only less than four rings have been observed in experiments. In this work, atmospheric pressure glow discharge above a water anode is conducted to produce diversified concentric-ring patterns. Results indicate that as time elapses, the number of concentric rings increases continuously and up to five rings have been found in the concentric-ring patterns. Moreover, the ring number increases continuously with increasing discharge current. The electrical conductivity of the anode plays an important role in the transition of the concentric patterns due to its positive relation with ionic strength. Hence, the electrical conductivity of the water anode is investigated as a function of time and discharge current. From optical emission spectrum, gas temperature and intensity ratio related with density and temperature of electron have been calculated. The various concentric-ring patterns mentioned above have been simulated at last with an autocatalytic reaction model.
This work is financially supported by National Natural Science Foundation of China (Nos. 11875121 and 51977057), Natural Science Interdisciplinary Research Program of Hebei University (Nos. DXK201908 and DXK202011), and Natural Science Foundation of Hebei Province, China (Nos. A2020201025 and A2019201100). In addition, we appreciate the financial support from Post-Graduate's Innovation Fund Project of Hebei Province (Nos. CXZZBS2019023 and CXZZBS2019029), and Post-Graduate's Innovation Fund Project of Hebei University (Nos. HBU2021ss063 and HBU2021bs011).
[1] |
Xu S F and Zhong X X 2015 Phys. Plasmas 22 103519 doi: 10.1063/1.4934710
|
[2] |
Foster J E et al 2020 Plasma Sources Sci. Technol. 29 034004 doi: 10.1088/1361-6595/ab7089
|
[3] |
Jia P Y et al 2021 Plasma Sources Sci. Technol. 30 095021 doi: 10.1088/1361-6595/abde51
|
[4] |
Shang K F, Li J and Morent R 2019 Plasma Sci. Technol. 21 043001 doi: 10.1088/2058-6272/aafbc6
|
[5] |
Li X C et al 2019 Phys. Plasmas 26 033507 doi: 10.1063/1.5080184
|
[6] |
Shutov D A et al 2020 J. Phys. D: Appl. Phys. 53 445202 doi: 10.1088/1361-6463/aba4d7
|
[7] |
Jamroz P, Dzimitrowicz A and Pohl P 2018 Plasma Process. Polym. 15 1700083 doi: 10.1002/ppap.201700083
|
[8] |
He B B et al 2017 J. Phys. D: Appl. Phys. 50 445207 doi: 10.1088/1361-6463/aa8819
|
[9] |
Dzimitrowicz A et al 2019 Plasma Process. Polym. 16 1900033 doi: 10.1002/ppap.201900033
|
[10] |
Chen Q, Li J S and Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005 doi: 10.1088/0022-3727/48/42/424005
|
[11] |
Khlyustova A et al 2021 J. Chem. Technol. Biotechnol. 96 1125 doi: 10.1002/jctb.6628
|
[12] |
Dzimitrowicz A et al 2020 Nanomaterials 10 1088 doi: 10.3390/nano10061088
|
[13] |
Laroussi M 2020 Front. Phys. 8 74 doi: 10.3389/fphy.2020.00074
|
[14] |
Vanraes P and Bogaerts A 2021 J. Appl. Phys. 129 220901 doi: 10.1063/5.0044905
|
[15] |
Li X C et al 2020 Plasma Process. Polym. 17 1900223 doi: 10.1002/ppap.201900223
|
[16] |
Yang Z M, Kovach Y and Foster J 2021 J. Appl. Phys. 129 163303 doi: 10.1063/5.0043812
|
[17] |
Geng J L et al 2018 Sci. Sin. Phys. Mech. Astron. 48 025202 (in Chinese) doi: 10.1360/SSPMA2017-00126
|
[18] |
Li X C et al 2018 Acta Phys. Sin. 67 075201 (in Chinese) doi: 10.7498/aps.67.20172205
|
[19] |
Miao S Y et al 2008 IEEE Trans. Plasma Sci. 36 126 doi: 10.1109/TPS.2007.913888
|
[20] |
Bruggeman P et al 2008 J. Phys. D: Appl. Phys. 41 215201 doi: 10.1088/0022-3727/41/21/215201
|
[21] |
Wilson A et al 2008 Plasma Sources Sci. Technol. 17 045001 doi: 10.1088/0963-0252/17/4/045001
|
[22] |
Chen Y F et al 2020 Plasma Sci. Technol. 22 055404 doi: 10.1088/2058-6272/ab66e9
|
[23] |
Kovach Y E et al 2021 Plasma Sources Sci. Technol. 30 015007 doi: 10.1088/1361-6595/abc815
|
[24] |
Rumbach P et al 2019 Plasma Sources Sci. Technol. 28 105014 doi: 10.1088/1361-6595/ab45e4
|
[25] |
Shirai N et al 2014 Plasma Sources Sci. Technol. 23 054010 doi: 10.1088/0963-0252/23/5/054010
|
[26] |
Zheng P C et al 2015 Plasma Sources Sci. Technol. 24 015010 doi: 10.1088/0963-0252/24/1/015010
|
[27] |
Verreycken T, Bruggeman P and Leys C 2009 J. Appl. Phys. 105 083312 doi: 10.1063/1.3117223
|
[28] |
Li X C et al 2017 Phys. Plasmas 24 113504 doi: 10.1063/1.5010209
|
[29] |
Gao K et al 2019 Phys. Plasmas 26 113501 doi: 10.1063/1.5116063
|
[30] |
Shirai N, Ibuka S and Ishii S 2009 Appl. Phys. Express 2 036001 doi: 10.1143/APEX.2.036001
|
[31] |
Shirai N et al 2011 IEEE Trans. Plasma Sci. 39 2652 doi: 10.1109/TPS.2011.2158324
|
[32] |
Kovach Y E et al 2019 IEEE Trans. Plasma Sci. 47 3214 doi: 10.1109/TPS.2019.2918065
|
[33] |
Zhang S Q and Dufour T 2018 Phys. Plasmas 25 073502 doi: 10.1063/1.5030099
|
[34] |
Burlica R and Locke B R 2008 IEEE Trans. Ind. Appl. 44 482 doi: 10.1109/TIA.2008.916603
|
[35] |
Shang K F et al 2016 Jpn. J. Appl. Phys. 55 01AB02 doi: 10.7567/JJAP.55.01AB02
|
[36] |
Li X C et al 2019 Plasma Sources Sci. Technol. 28 055006 doi: 10.1088/1361-6595/aaffff
|
[37] |
Li S Z et al 2009 Appl. Phys. Lett. 94 111501 doi: 10.1063/1.3099339
|
[38] |
Thiyagarajan M, Sarani A and Nicula C 2013 J. Appl. Phys. 113 233302 doi: 10.1063/1.4811339
|
[39] |
Bazinette R, Paillol J and Massines F 2015 Plasma Sources Sci. Technol. 24 055021 doi: 10.1088/0963-0252/24/5/055021
|
[40] |
Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001 doi: 10.1088/0022-3727/43/40/403001
|
[41] |
Wang Y Y et al 2021 Plasma Sources Sci. Technol. 30 075009 doi: 10.1088/1361-6595/abfbc6
|
[42] |
Luque J and Crosley D R 1999 LIFBASE: Database and
Spectral Simulation Program, Version 2.1.1 SRI
International Report MP 99-009
|
[43] |
Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002 doi: 10.1088/0022-3727/49/39/393002
|
[44] |
Choi J H et al 2008 Appl. Phys. Lett. 93 081504 doi: 10.1063/1.2976308
|
[45] |
Noma Y et al 2008 Appl. Phys. Lett. 93 101503 doi: 10.1063/1.2980436
|
[46] |
Choi J H, Noma Y and Terashima K 2009 Plasma Sources Sci. Technol. 18 025023 doi: 10.1088/0963-0252/18/2/025023
|
[1] | Jingyuan FU (付敬原), Pengfei LIU (刘鹏飞), Xishuo WEI (魏西硕), Zhihong LIN (林志宏), Nathaniel Mandrachia FERRARO, Raffi NAZIKIAN. Effects of resonant magnetic perturbations on radial electric fields in DIII-D tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105104. DOI: 10.1088/2058-6272/ac190e |
[2] | Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c |
[3] | Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63 |
[4] | Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0 |
[5] | Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9 |
[6] | Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505 |
[7] | A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06 |
[8] | RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05 |
[9] | HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04 |
[10] | Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15 |