Citation: | Guoliang YUAN, Zuowei WEN, Lingfeng WEI, Jinwen ZHANG, Qingwei YANG. Neutron yield measurement system of HL-2A tokamak[J]. Plasma Science and Technology, 2022, 24(6): 064006. DOI: 10.1088/2058-6272/ac4f40 |
This research presents the development of HL-2A neutron yield measurement which includes 235U fission chamber and BF3 and 3He proportional counters. Equivalent noise formula of the radiation detection signal amplification system was derived to guide the development of the signal amplification system. Then all detectors were calibrated in situ by using the 252Cf neutron source. The neutron yield of the HL-2A during neutral beam heating was analyzed. These results indicate that the developed neutron flux diagnostic system can obtain neutron yield results under various experimental conditions of the HL-2A tokamak, and can provide information on neutron yield.
This work was partially supported by the Science & Technology Department of Sichuan Province in China (No. 2021YFSY0018), National Natural Science Foundation of China (No. 11675049).
The authors would like to thank Dr. Luan Chunhong for the English language review.
[1] |
Bertalot L et al 1999 Rev. Sci. Instrum. 70 1137 doi: 10.1063/1.1149332
|
[2] |
Pu N et al 2017 Rev. Sci. Instrum. 88 113302 doi: 10.1063/1.5009475
|
[3] |
Springham S V et al 2021 Nucl. Instrum. Methods Phys. Res. A 988 164830 doi: 10.1016/j.nima.2020.164830
|
[4] |
Hendel H W et al 1990 Rev. Sci. Instrum. 61 1900 doi: 10.1063/1.1141115
|
[5] |
Barnes C W et al 1990 Rev. Sci. Instrum. 61 31511 doi: 10.1063/1.1141671
|
[6] |
Jarvis O N et al 1990 Rev. Sci. Instrum. 61 3172 doi: 10.1063/1.1141677
|
[7] |
Nishitani T et al 1992 Rev. Sci. Instrum. 63 5270 doi: 10.1063/1.1143439
|
[8] |
Isobe M et al 2018 IEEE Trans. Plasma Sci. 46 2050 doi: 10.1109/TPS.2018.2836987
|
[9] |
Zhong G Q et al 2011 Plasma Sci. Technol. 13 162 doi: 10.1088/1009-0630/13/2/07
|
[10] |
Zhong G Q et al 2016 Plasma Phys. Control. Fusion 58 075013 doi: 10.1088/0741-3335/58/7/075013
|
[11] |
Bertalot L et al 2016 IEEE Trans. Nucl. Sci. 63 1682 doi: 10.1109/TNS.2016.2553125
|
[12] |
Bertalot L et al 2019 J. Fusion Energy 38 283 doi: 10.1007/s10894-019-00220-w
|
[13] |
Yuan G L et al 2014 Plasma Sci. Technol. 16 168 doi: 10.1088/1009-0630/16/2/14
|
[14] |
Vermeeren L et al 2011 IEEE Trans. Nucl. Sci. 58 362 doi: 10.1109/TNS.2011.2113356
|
[15] |
Elter Z et al 2015 Nucl. Instrum. Methods Phys. Res. A 774 60 doi: 10.1016/j.nima.2014.11.065
|
[16] |
Alferov V P et al 2018 IEEE Trans. Nucl. Sci. 65 2421 doi: 10.1109/TNS.2018.2860986
|
[17] |
Gatti E et al 1990 Nucl. Instrum. Methods Phys. Res. A 297 467 doi: 10.1016/0168-9002(90)91331-5
|
[18] |
Bertuccio G, Pullia A and De Geronimo G 1996 Nucl. Instrum. Methods Phys. Res. A 380 301 doi: 10.1016/S0168-9002(96)00474-3
|
[19] |
Fabris L, Madden N W and Yaver H 1999 Nucl. Instrum. Methods Phys. Res. A 424 545 doi: 10.1016/S0168-9002(98)01371-0
|
[20] |
Gál J et al 1995 Nucl. Instrum. Methods Phys. Res. A 366 145 doi: 10.1016/0168-9002(95)00550-1
|
[21] |
Yuan G L et al 2020 Nucl. Instrum. Methods Phys. Res. A 968 163977 doi: 10.1016/j.nima.2020.163977
|
[22] |
Nieschmidt E B et al 1988 Rev. Sci. Instrum. 59 1715 doi: 10.1063/1.1140143
|
[23] |
Nishitani T et al 2018 Fusion Eng. Des. 136 210 doi: 10.1016/j.fusengdes.2018.01.053
|
[1] | N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333 |
[2] | Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f |
[3] | Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a |
[4] | Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491 |
[5] | Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1 |
[6] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06 |
[7] | ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01 |
[8] | S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01 |
[9] | ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01 |
[10] | Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14. |