Citation: | Shilong FAN, Fei YANG, Xiaonan ZHU, Zhaowei DIAO, Lin CHEN, Mingzhe RONG. Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing[J]. Plasma Science and Technology, 2022, 24(4): 044001. DOI: 10.1088/2058-6272/ac4f41 |
Here we develop a two-dimensional numerical model of wire and arc additive manufacturing (WAAM) to determine the relationship between process parameters and deposition geometry, and to reveal the influence mechanism of process parameters on deposition geometry. From the predictive results, a higher wire feed rate matched with a higher current could generate a larger and hotter droplet, and thus transfer more thermal and kinetic energy into melt pool, which results in a wider and lower deposited layer with deeper penetration. Moreover, a higher preheat temperature could enlarge melt pool volume and thus enhance heat and mass convection along both axial and radial directions, which gives rise to a wider and higher deposited layer with deeper penetration. These findings offer theoretical guidelines for the acquirement of acceptable deposition shape and optimal deposition quality through adjusting process parameters in fabricating WAAM components.
This work was supported by National Natural Science Foundation of China (Nos. 52077172, U1966602), Shaanxi Province 'Sanqin scholar-s' Innovation Team Project (Key technology of advanced DC power equipment and its industrialization demonstration innovation team of Xi'an Jiaotong University).
[1] |
Wang Y X et al 2020 High Volt.
6 861 doi: 10.1049/hve2.12035
|
[2] |
Bruzzone P et al 2015 Fusion Eng. Des.
96-97 77 doi: 10.1016/j.fusengdes.2015.06.150
|
[3] |
Bedkowski M et al 2016 Appl. Therm. Eng.
101 147 doi: 10.1016/j.applthermaleng.2016.02.137
|
[4] |
Yi C L et al 2021 Addit. Manuf.
44 102034 doi: 10.1016/j.addma.2021.102034
|
[5] |
Xiong J, Lei Y Y and Li R 2017 Appl. Therm. Eng.
126 43 doi: 10.1016/j.applthermaleng.2017.07.168
|
[6] |
Lopes J G et al 2020 J. Manuf. Process.
59 739 doi: 10.1016/j.jmapro.2020.10.007
|
[7] |
Rodrigues T A et al 2021 Addit. Manuf.
48 102428 doi: 10.1016/j.addma.2021.102428
|
[8] |
Rodrigues T A et al 2020 Addit. Manuf.
34 101200 doi: 10.1016/j.addma.2020.101200
|
[9] |
Derekar K S 2018 Mater. Sci. Technol.
34 895 doi: 10.1080/02670836.2018.1455012
|
[10] |
Zeng Z et al 2020 Addit. Manuf.
32 101051 doi: 10.1016/j.addma.2020.101051
|
[11] |
Zhang Z D et al 2021 J. Manuf. Process.
68 583 doi: 10.1016/j.jmapro.2021.05.060
|
[12] |
Daryadel S and Minary-Jolandan M 2020 Mater. Lett.
280 128584 doi: 10.1016/j.matlet.2020.128584
|
[13] |
Fang X W et al 2021 Mater. Sci. Eng. A
800 140168 doi: 10.1016/j.msea.2020.140168
|
[14] |
Ou W et al 2018 Int. J. Heat Mass Transfer
127 1084 doi: 10.1016/j.ijheatmasstransfer.2018.08.111
|
[15] |
Dinovitzer M et al 2019 Addit. Manuf.
26 138 doi: 10.1016/j.addma.2018.12.013
|
[16] |
Geng R W et al 2021 J. Manuf. Process.
64 369 doi: 10.1016/j.jmapro.2021.01.037
|
[17] |
Rodrigues T A et al 2021 J. Mater. Process. Technol.
296 117196 doi: 10.1016/j.jmatprotec.2021.117196
|
[18] |
Ogino Y, Asai S and Hirata Y 2018 Weld. World
62 393 doi: 10.1007/s40194-018-0556-z
|
[19] |
Hejripour F, Valentine T D and Aidun K D 2018 Int. J. Heat Mass Transfer
125 471 doi: 10.1016/j.ijheatmasstransfer.2018.04.092
|
[20] |
J nsson P G, Westhoff R C and Szekely J 1993 J. Appl. Phys.
74 5997 doi: 10.1063/1.355213
|
[21] |
Li Z J et al 2020 High Volt.
5 313 doi: 10.1049/hve.2019.0064
|
[22] |
Hu J and Tsai H L 2007 Int. J. Heat Mass Transfer
50 833 doi: 10.1016/j.ijheatmasstransfer.2006.08.025
|
[23] |
Zhao Y Y, Lee P S and Chung H 2019 Int. J. Heat Mass Transfer
129 1110 doi: 10.1016/j.ijheatmasstransfer.2018.10.037
|
[24] |
Rong M Z et al 2010 IEEE Trans. Plasma Sci.
38 2306 doi: 10.1109/TPS.2010.2050703
|
[25] |
Cadiou S et al 2020 Int. J. Heat Mass Transfer
148 119102 doi: 10.1016/j.ijheatmasstransfer.2019.119102
|
[26] |
Ikram A and Chung H 2021 J. Manuf. Process.
64 1529 doi: 10.1016/j.jmapro.2021.03.001
|
[27] |
Ogino Y and Hirata Y 2015 Weld. World
59 465 doi: 10.1007/s40194-015-0221-8
|
[28] |
Courtois M et al 2016 J. Phys. D: Appl. Phys.
49 155503 doi: 10.1088/0022-3727/49/15/155503
|
[29] |
Cadiou S et al 2020 Addit. Manuf.
36 101541 doi: 10.1016/j.addma.2020.101541
|
[30] |
Zhao Y Y and Chung H 2017 Int. J. Heat Mass Transfer
111 1129 doi: 10.1016/j.ijheatmasstransfer.2017.04.090
|
[31] |
Hertel M et al 2013 J. Phys. D: Appl. Phys.
46 224003 doi: 10.1088/0022-3727/46/22/224003
|
[32] |
Wang F et al 2003 J. Phys. D: Appl. Phys.
36 1143 doi: 10.1088/0022-3727/36/9/313
|
[33] |
Menart J and Malik S 2002 J. Phys. D: Appl. Phys.
35 867 doi: 10.1088/0022-3727/35/9/306
|
[34] |
Traidia A and Roger F 2011 Int. J. Heat Mass Transfer
54 2163 doi: 10.1016/j.ijheatmasstransfer.2010.12.005
|
[35] |
Pan J J et al 2016 Int. J. Heat Mass Transfer
96 346 doi: 10.1016/j.ijheatmasstransfer.2016.01.014
|
[36] |
Lowke J J, Morrow R and Haidar J 1997 J. Phys. D: Appl. Phys.
30 2033 doi: 10.1088/0022-3727/30/14/011
|
[37] |
Xie W H et al 2021 High Volt.
6 674 doi: 10.1049/hve2.12124
|
[38] |
Bai X W et al 2018 Int. J. Heat Mass Transfer
124 504 doi: 10.1016/j.ijheatmasstransfer.2018.03.085
|
[39] |
Shah A, Kumar A and Ramkumar J 2018 J. Mater. Process. Technol.
256 109 doi: 10.1016/j.jmatprotec.2018.02.005
|
[40] |
Fan G H, Tsai L H and Na S J 2001 Int. J. Heat Mass Transfer
44 417 doi: 10.1016/S0017-9310(00)00094-6
|
[41] |
Wang Y and Tsai H L 2001 Int. J. Heat Mass Transfer
44 2067 doi: 10.1016/S0017-9310(00)00252-0
|
[42] |
Rong M et al 2020 Gas discharge plasma dataset (GPLAS), net emission coefficient of Argon (https://plasma-data.net/index)
|
[43] |
Dong G J et al 2020 High Volt.
5 166 doi: 10.1049/hve.2019.0242
|
[44] |
Ferreira dos Santos E B 2017 Influence of current pulse profile on metal transfer in pulsed gas metal arc welding MSc Thesis University of Waterloo, Waterloo, USA
|
[45] |
Hu J and Tsai H L 2007 J. Heat Transfer
129 1025 doi: 10.1115/1.2724847
|
[46] |
Abe T, Kaneko J and Sasahara H 2020 Addit. Manuf.
35 101357 doi: 10.1016/j.addma.2020.101357
|
[47] |
Palani P K and Murugan N 2007 Int. J. Adv. Manuf. Technol.
34 1111 doi: 10.1007/s00170-006-0678-0
|
[1] | Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602 |
[2] | Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b |
[3] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[4] | Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a |
[5] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[6] | Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6 |
[7] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[8] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08 |
[9] | CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04 |
[10] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
1. | Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261 | |
2. | Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992 | |
3. | Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557 | |
4. | Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w | |
5. | Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852 | |
6. | Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337 | |
7. | Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710 | |
8. | Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981 | |
9. | Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488 |