Citation: | Ke CHEN, Lianghao WAN, Bingyan CHEN, Tao CHU, Renyue GENG, Deyu SONG, Xiang HE, Wei SU, Cheng YIN, Minglei SHAN, Yongfeng JIANG. Characteristics of water volatilization and oxides generation by using positive and negative corona[J]. Plasma Science and Technology, 2022, 24(4): 044007. DOI: 10.1088/2058-6272/ac567c |
The physical and chemical properties have significant differences for the positive and negative charged particles generated by discharge. In this work, a positive and negative corona discharge system was established, and two discharge reactors for charged particles restraining and acting were designed by a needle electrode covered with a quartz tube and a plate electrode filled with water. The corona discharges happened within the needle-plate electrodes were excited by a positive and negative high voltage source, and the characteristics of both water volatilization and oxides generation were examined within influence of the distances of both quartz tube inside and outside. The results show that the characteristics of both the water volatilization and oxides generation can be affected by the distances of both quartz tube inside and outside. When the distances of tube inside were increased from 5.00 to 13.00 mm, the water volatilizations decreased under negative corona, and increased firstly and declined immediately under positive corona. The maximum value of the water volatilization appeared in the distances of tube inside with 6.00–8.00 mm. In addition, the concentrations of the HNOx and H2O2 in treated water decreased with increasing the distances of tube inside. Moreover, with increasing the distances of tube outside from 4.00 to 14.00 mm, the change trends of both the water volatilizations and oxides presented the same as the distances of tube inside, and the maximum value of the water volatilization and oxides appeared in the distance of tube outside with about 9.00 mm. Overall, the positive corona can generate more water volatilizations and oxides in water than negative corona, and non H2O2 can be produced by negative corona. The results reflect the difference between positive and negative corona interaction with water, which can provide reference for plasma application.
This work was partially supported by Natural Science Foundation of the Jiangsu Province (No. BK20191162), Fundamental Research Funds for the Central Universities (No. B210203006), National Natural Science Foundation of China (No. 11874140), and Changzhou Science and Technology Program (No. CJ20190046).
[1] |
Park S et al 2021 Nature 592 49 doi: 10.1038/s41586-021-03359-9
|
[2] |
Li J et al 2021 Commun. Phys. 4 64 doi: 10.1038/s42005-021-00566-8
|
[3] |
Chen B Y et al 2018 Plasma Sci. Technol. 20 024009 doi: 10.1088/2058-6272/aa9b7a
|
[4] |
Zhao J Y et al 2021 Chem. Eng. J. 417 128143 doi: 10.1016/j.cej.2020.128143
|
[5] |
Wang G M 2020 Plast. Sci. Technol. 48 125 (in Chinese)
|
[6] |
Attri P et al 2017 Sci. Rep. 7 2636 doi: 10.1038/s41598-017-02690-4
|
[7] |
Ning W J et al 2018 J. Phys. D: Appl. Phys. 51 125204 doi: 10.1088/1361-6463/aaafbf
|
[8] |
Liu D X, He T T and Zhang H 2019 High Volt. Eng. 45 2329 (in Chinese)
|
[9] |
Nasir N M et al 2016 Arch. Biochem. Biophys. 605 76 doi: 10.1016/j.abb.2016.03.033
|
[10] |
Bogaerts A and Centi G 2020 Front. Energy Res. 8 111 doi: 10.3389/fenrg.2020.00111
|
[11] |
George A et al 2021 Renew. Sust. Energy Rev. 135 109702 doi: 10.1016/j.rser.2020.109702
|
[12] |
Wimler D et al 2019 Materials 12 1523 doi: 10.3390/ma12091523
|
[13] |
Varilla C 2020 Foods 9 1435 doi: 10.3390/foods9101435
|
[14] |
Chen Y Q, Cheng J H and Sun D W 2020 Crit. Rev. Food Sci. Nutr. 60 2676 doi: 10.1080/10408398.2019.1654429
|
[15] |
Guo H et al 2019 Chemosphere 230 190 doi: 10.1016/j.chemosphere.2019.05.011
|
[16] |
Zhou R W et al 2021 Sci. Total Environ. 750 142295 doi: 10.1016/j.scitotenv.2020.142295
|
[17] |
Mei D H, Fang Z and Shao T 2020 Proc. CSEE 40 1339 (in Chinese)
|
[18] |
Chen B Y et al 2019 J. Hazard. Mater. 363 55 doi: 10.1016/j.jhazmat.2018.09.051
|
[19] |
Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002 doi: 10.1088/0963-0252/25/5/053002
|
[20] |
Zhou R W et al 2020 J. Phys. D: Appl. Phys. 53 303001 doi: 10.1088/1361-6463/ab81cf
|
[21] |
Wu S et al 2021 J. Environ. Chem. Eng. 9 104761 doi: 10.1016/j.jece.2020.104761
|
[22] |
Park S, Park J Y and Choe W 2019 Chem. Eng. J. 378 122163 doi: 10.1016/j.cej.2019.122163
|
[23] |
Shan M L et al 2019 Plasma Sci. Technol. 21 074002 doi: 10.1088/2058-6272/ab0b62
|
[24] |
Liu Z C et al 2015 J. Phys. D: Appl. Phys. 48 495201 doi: 10.1088/0022-3727/48/49/495201
|
[25] |
Liu J D et al 2016 Sci. Rep. 6 38454 doi: 10.1038/srep38454
|
[26] |
Bruggeman P and Schram D C 2010 Plasma Sources Sci. Technol. 19 045025 doi: 10.1088/0963-0252/19/4/045025
|
[27] |
Xiong Q, Yang Z Q and Bruggeman P J 2015 J. Phys. D: Appl. Phys. 48 424008 doi: 10.1088/0022-3727/48/42/424008
|
[28] |
Magureanu M et al 2016 Chemosphere 165 507 doi: 10.1016/j.chemosphere.2016.09.073
|
[29] |
Ma Y et al 2018 J. Phys. D: Appl. Phys. 51 155205 doi: 10.1088/1361-6463/aab379
|
[30] |
Xin Y Y et al 2020 J. Water Process Eng. 37 101457 doi: 10.1016/j.jwpe.2020.101457
|
[31] |
Jiang J K, Gonzalvo Y A and Bruggeman P J 2021 Plasma Chem. Plasma Process. 41 1569 doi: 10.1007/s11090-021-10202-6
|
[32] |
He B B et al 2017 J. Phys. D: Appl. Phys. 50 445207 doi: 10.1088/1361-6463/aa8819
|
[33] |
Preis S et al 2014 Ozone: Sci. Eng. 36 94 doi: 10.1080/01919512.2013.836955
|
[34] |
Fu Y Y et al 2020 Plasma Res. Express 2 013001 doi: 10.1088/2516-1067/ab6c84
|
[35] |
Chen B Y et al 2021 High Volt. Eng. 47 786 (in Chinese)
|
[36] |
Wang Q et al 2018 Chin. J. Vac. Sci. Technol. 38 259 (in Chinese)
|
[37] |
Wu S Q et al 2019 Plasma Process. Polym. 16 1800176 doi: 10.1002/ppap.201800176
|
[38] |
Kong G Y and Liu D X 2014 High Volt. Eng. 40 2956 (in Chinese)
|
[39] |
Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201 doi: 10.1088/0022-3727/45/42/425201
|
[40] |
He B B et al 2018 J. Electrochem. Soc. 165 E454 doi: 10.1149/2.0241810jes
|
[41] |
Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201 doi: 10.1088/0022-3727/45/42/425201
|
[42] |
Yan J H et al 2008 Spectrosc. Spect. Anal. 28 1851 (in Chinese)
|
[43] |
Tezcanli-Güyer G and Ince N H 2004 Ultrasonics 42 603 doi: 10.1016/j.ultras.2004.01.096
|
[44] |
Ho L C et al 2013 Energy 63 252 doi: 10.1016/j.energy.2013.10.031
|
[45] |
Tas M A, van Hardeveld R and Veldhuizen E M 1997 Plasma Chem. Plasma Process. 17 371 doi: 10.1023/A:1021818313047
|
[46] |
Penetrante B M et al 1997 Plasma Sources Sci. Technol. 6 251 doi: 10.1088/0963-0252/6/3/002
|
[47] |
Haddouche A and Lemerini M 2015 Plasma Sci. Technol. 17 589 doi: 10.1088/1009-0630/17/7/11
|
[48] |
Takita K et al 2007 Proc. Combust. Inst. 31 2489 doi: 10.1016/j.proci.2006.07.108
|
[49] |
Chen J H and Wang P X 2005 IEEE Trans. Plasma Sci. 33 808 doi: 10.1109/TPS.2005.844530
|
[50] |
Buxton V et al 1988 J. Phys. Chem. Ref. Data 17 513 doi: 10.1063/1.555805
|
[51] |
Moreau E et al 2013 J. Phys. D: Appl. Phys. 46 475204 doi: 10.1088/0022-3727/46/47/475204
|
[52] |
Chen S, van den Berg R G W and Nijdam S 2018 Plasma Sources Sci. Technol. 27 055021 doi: 10.1088/1361-6595/aabd5f
|
[53] |
Zouzou N, Moreau E and Touchard G 2006 J. Electrostat. 64 537 doi: 10.1016/j.elstat.2005.10.036
|
[1] | Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602 |
[2] | Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b |
[3] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[4] | Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a |
[5] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[6] | Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6 |
[7] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[8] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08 |
[9] | CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04 |
[10] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
1. | Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261 | |
2. | Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992 | |
3. | Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557 | |
4. | Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w | |
5. | Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852 | |
6. | Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337 | |
7. | Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710 | |
8. | Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981 | |
9. | Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488 |