Advanced Search+
Ming XU, Yi WANG, Chun LIU, Xinyang SI, Rongrong GAO, Wei LUO, Guanghui QU, Wanli JIA, Qian LIU. Photoexcited carrier dynamics in a GaAs photoconductive switch under nJ excitation[J]. Plasma Science and Technology, 2022, 24(7): 075503. DOI: 10.1088/2058-6272/ac5af8
Citation: Ming XU, Yi WANG, Chun LIU, Xinyang SI, Rongrong GAO, Wei LUO, Guanghui QU, Wanli JIA, Qian LIU. Photoexcited carrier dynamics in a GaAs photoconductive switch under nJ excitation[J]. Plasma Science and Technology, 2022, 24(7): 075503. DOI: 10.1088/2058-6272/ac5af8

Photoexcited carrier dynamics in a GaAs photoconductive switch under nJ excitation

More Information
  • Corresponding author:

    Ming XU, E-mail: xuming@xaut.edu.cn

    Wei LUO, E-mail: lwreus@163.com

  • Received Date: November 12, 2021
  • Revised Date: March 01, 2022
  • Accepted Date: March 03, 2022
  • Available Online: December 13, 2023
  • Published Date: June 16, 2022
  • In this article, the bunched transport of photoexcited carriers in a GaAs photoconductive semiconductor switch (PCSS) with interdigitated electrodes is investigated under femtosecond laser excitation. Continuous outputs featuring high gain are obtained for single shots and at 1 kHz by varying the optical excitation energy. An ensemble three-valley Monte Carlo simulation is utilized to investigate the transient characteristics and the dynamic process of photoexcited carriers. It demonstrates that the presence of a plasma channel can be attributed to the bunching of high-density electron–hole pairs, which are transported in the form of a high-density filamentary current. The results provide a picture of the evolution of photoexcited carriers during transient switching. A photoinduced heat effect is analyzed, which reveals the related failure mechanism of GaAs PCSS at various repetition rates.

  • This work was supported in part by National Natural Science Foundation of China (Nos. 51877177 and 52007152), in part by the Scientific Research Program Funded by Shaanxi Provincial Education Department (Nos. 21JP085 and 21JP088) and the Youth Innovation Team of Shaanxi Universities, in part by the Natural Science Basic Research Plan of Shaanxi Province (Nos. 2021JZ-48 and 2020JM-462), in part by Fellowship of China Postdoctoral Science Foundation (No. 2021M702639), and in part by Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (No. SKL2020KF01).

  • [1]
    Zhang S et al 2021 Plasma Sci. Technol. 23 064007 doi: 10.1088/2058-6272/abed30
    [2]
    Liu P et al 2012 Plasma Sci. Technol. 14 347 doi: 10.1088/1009-0630/14/4/15
    [3]
    Luo W et al 2021 Plasma Sci. Technol. 23 115601 doi: 10.1088/2058-6272/ac17e5
    [4]
    Castro-Camus E, Lloyd-Hughes J and Johnston M B 2005 Phys. Rev. B 71 195301 doi: 10.1103/PhysRevB.71.195301
    [5]
    Zutavern F J et al 1990 IEEE Trans. Electron Dev. 37 2472 doi: 10.1109/16.64520
    [6]
    Zutavern F J et al 2013 Multi-filament PCSS modules to replace high current pulsed power switches 2013 19th IEEE Pulsed Power Conf. (PPC) (San Francisco, CA) (IEEE) 1
    [7]
    Nunnally W C 2005 IEEE Trans. Plasma Sci. 33 1262 doi: 10.1109/TPS.2005.852406
    [8]
    Yardimci N T et al 2015 IEEE Trans. Terahertz Sci. Technol. 5 223 doi: 10.1109/TTHZ.2015.2395417
    [9]
    Dreyhaupt A et al 2005 Appl. Phys. Lett. 86 121114 doi: 10.1063/1.1891304
    [10]
    Ray S et al 2015 IEEE Trans. Plasma Sci. 43 1851 doi: 10.1109/TPS.2014.2343520
    [11]
    Sun Y et al 2021 IEEE Electron Device Lett. 42 1646 doi: 10.1109/LED.2021.3114600
    [12]
    Zhang T et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1991 doi: 10.1109/TDEI.2015.004950
    [13]
    Hu L et al 2016 Rev. Sci. Instrum. 87 086107 doi: 10.1063/1.4960397
    [14]
    Wang B J, Liu K F and Qiu J 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1287 doi: 10.1109/TDEI.2013.6571446
    [15]
    Xu M et al 2011 Plasma Sci. Technol. 13 672 doi: 10.1088/1009-0630/13/6/07
    [16]
    Hu L et al 2018 IEEE Trans. Electron Dev. 65 1308 doi: 10.1109/TED.2018.2802642
    [17]
    Chu X et al 2021 Electronics 10 357 doi: 10.3390/electronics10030357
    [18]
    Liu Y et al 2020 High Power Laser Part. Beams 32 025005 (in Chinese) doi: 10.11884/HPLPB202032.190328
    [19]
    Shen Y et al 2019 IEEE Trans. Plasma Sci. 47 4584 doi: 10.1109/TPS.2019.2906696
    [20]
    Joshi R P et al 1999 J. Appl. Phys. 86 3833 doi: 10.1063/1.371295
    [21]
    Mar A et al 2007 16th IEEE Int. Pulsed Power Conf. (Albuquerque, NM: IEEE) 1000–3
    [22]
    Vermeersch B et al 2013 Phys. Rev. B 88 214302 doi: 10.1103/PhysRevB.88.214302
    [23]
    Grubin H L and Kaul R 1973 IEEE Trans. Electron Dev. 20 600 doi: 10.1109/T-ED.1973.17706
    [24]
    Mar A et al 2001 PPPS-2001 pulsed power plasma science 28th IEEE Int. Conf. on Plasma Science and 13th IEEE Int. Pulsed Power Conf. 1 (Las Vegas, NV: IEEE) 166–9
    [25]
    Cummings M D, Holzman J F and Elezzabi A Y 2001 Appl. Phys. Lett. 78 3535 doi: 10.1063/1.1377041
    [26]
    Baca A G et al 1993 Ninth IEEE Int. Pulsed Power Conf. (Albuquerque, NM: IEEE) 84–7
    [27]
    Zhao Y, Xie W P and Liu H W 2014 IEEE Int. Power Modulator and High Voltage Conf. (IPMHVC) (Santa Fe, NM: IEEE) 111–4
    [28]
    Wang X M et al 2014 IEEE Trans. Electron Dev. 61 850 doi: 10.1109/TED.2014.2299572
    [29]
    Loubriel G M et al 1998 IEEE Trans. Plasma Sci. 26 1393 doi: 10.1109/27.736024
    [30]
    Loubriel G M et al 1994 Appl. Phys. Lett. 64 3323 doi: 10.1063/1.111266
    [31]
    Mayer K M, Huebener R P and Rau U 1990 J. Appl. Phys. 67 1412 doi: 10.1063/1.345698
  • Related Articles

    [1]Zhiwen CHENG, Guangyu WEI, Lei YE, Zhiyong QIU. Nonlinear saturation of reversed shear Alfvén eigenmode via high-frequency quasi-mode generation[J]. Plasma Science and Technology, 2025, 27(1): 015101. DOI: 10.1088/2058-6272/ad8814
    [2]Debing ZHANG, Pengfei ZHAO, Yingfeng XU, Lei YE, Xianmei ZHANG. Gyrokinetic simulations of the kinetic electron effects on the electrostatic instabilities on the ITER baseline scenario[J]. Plasma Science and Technology, 2024, 26(9): 095101. DOI: 10.1088/2058-6272/ad4e78
    [3]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [4]Kaisheng FANG (方凯生), Jian BAO (包健), Zhihong LIN (林志宏). Gyrokinetic simulations of nonlinear interactions between magnetic islands and microturbulence[J]. Plasma Science and Technology, 2019, 21(11): 115102. DOI: 10.1088/2058-6272/ab3c83
    [5]Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5
    [6]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Huasen (张桦森), LIN Zhihong (林志宏). Nonlinear Generation of Zonal Fields by the Beta-Induced Alfvén Eigenmode in Tokamak[J]. Plasma Science and Technology, 2013, 15(10): 969-973. DOI: 10.1088/1009-0630/15/10/02
    [9]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [10]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01

Catalog

    Figures(7)

    Article views (162) PDF downloads (187) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return