Citation: | Yu HE, Jun CHENG, Yuhong XU, Qian FANG, Yucai LI, Jianqiang XU, Weice WANG, Longwen YAN, Zhihui HUANG, Na WU, Min JIANG, Zhongbing SHI, Yi LIU, Wulyu ZHONG, Min XU. Impact of the mass isotope on plasma confinement and transport properties in the HL-2A tokamak[J]. Plasma Science and Technology, 2022, 24(9): 095102. DOI: 10.1088/2058-6272/ac6356 |
The impact of the mass isotope on plasma confinement and transport properties has been investigated in Ohmically-heated hydrogen and deuterium plasmas in the HL-2A tokamak. Experimental results show that under similar discharge parameters the deuterium plasma has better confinement and lower turbulent transport than the hydrogen one, and concomitantly, it is found that the magnitude of geodesic acoustic mode zonal flows, the tilting angle of the Reynolds stress tensor and the turbulence correlation lengths are all larger in the edge region of the deuterium plasma. The results provide direct experimental evidence on the importance of the nonlinear energy coupling between ambient turbulence and zonal flows for governing the isotope effects in fusion plasmas.
The authors thank to the HL-2A team for their operational assistance in the experiment. This work was partially supported by National Natural Science Foundation of China (Nos. 11820101004, 11875017, 12075079 and 51821005) and partially supported by the National Key R & D Program of China (No. 2019YFE03020000), the National Magnetic Confinement Fusion Science Program of China (No. 2018YFE0310300), the Science and Technology Plan Project in Sichuan Province of China (No. 2020YFSY0047) and Sichuan International Science and Technology Innovation Cooperation Project (No. 2021YFH0066).
[1] |
Horton W 1999 Rev. Mod. Phys. 71 735 doi: 10.1103/RevModPhys.71.735
|
[2] |
Weisen H et al 2020 J. Plasmas Phys. 86 905860501 doi: 10.1017/S0022377820000781
|
[3] |
Bessenrodt-Weberpals M et al 1993 Nucl. Fusion 33 1205 doi: 10.1088/0029-5515/33/8/I09
|
[4] |
Stroth U et al 1995 Phys. Scr. 51 655 doi: 10.1088/0031-8949/51/5/019
|
[5] |
Barnes C W et al 1996 Phys. Plasmas 3 4521 doi: 10.1063/1.872069
|
[6] |
Scott S D et al 1995 Phys. Plasmas 2 2299 doi: 10.1063/1.871253
|
[7] |
Urano H et al 2012 Phys. Rev. Lett. 109 125001 doi: 10.1103/PhysRevLett.109.125001
|
[8] |
Urano H et al 2012 Nucl. Fusion 52 114021 doi: 10.1088/0029-5515/52/11/114021
|
[9] |
Xu Y et al 2013 Phys. Rev. Lett. 110 265005 doi: 10.1103/PhysRevLett.110.265005
|
[10] |
Schneider P A et al 2017 Nucl. Fusion 57 066003 doi: 10.1088/1741-4326/aa65b3
|
[11] |
Maggi C F et al 2018 Plama Phys. Control. Fusion 60 014045 doi: 10.1088/1361-6587/aa9901
|
[12] |
Maggi C F et al 2019 Nucl. Fusion 59 076028 doi: 10.1088/1741-4326/ab1ccd
|
[13] |
Ohshima S et al 2021 Plama Phys. Control. Fusion 63 104002 doi: 10.1088/1361-6587/ac1837
|
[14] |
Liu B et al 2015 Nucl. Fusion 55 112002 doi: 10.1088/0029-5515/55/11/112002
|
[15] |
Yamada H et al 2019 Phys. Rev. Lett. 123 185001 doi: 10.1103/PhysRevLett.123.185001
|
[16] |
Tanaka K et al 2019 Nucl. Fusion 59 126040 doi: 10.1088/1741-4326/ab4237
|
[17] |
Nakata M et al 2017 Phys. Rev. Lett. 118 165002 doi: 10.1103/PhysRevLett.118.165002
|
[18] |
Angioni C et al 2018 Phys. Plasmas 25 082517 doi: 10.1063/1.5045545
|
[19] |
Bonanomi N et al 2019 Nucl. Fusion 59 126025 doi: 10.1088/1741-4326/ab3ecc
|
[20] |
Garcia J et al 2017 Nucl. Fusion 57 014007 doi: 10.1088/1741-4326/57/1/014007
|
[21] |
Manas P et al 2019 Nucl. Fusion 59 014002 doi: 10.1088/1741-4326/aaeeb5
|
[22] |
Bustos A et al 2015 Phys. Plasmas 22 012305 doi: 10.1063/1.4905637
|
[23] |
Hahm T S et al 2013 Nucl. Fusion 53 072002 doi: 10.1088/0029-5515/53/7/072002
|
[24] |
Watanabe T H et al 2011 Nucl. Fusion 51 123003 doi: 10.1088/0029-5515/51/12/123003
|
[25] |
Garbet X et al 1997 Plama Phys. Control. Fusion 39 B91 doi: 10.1088/0741-3335/39/12B/007
|
[26] |
Pusztai I et al 2011 Phys. Plasmas 18 122501 doi: 10.1063/1.3663844
|
[27] |
Chen S L et al 1965 J. Appl. Phys. 36 2363 doi: 10.1063/1.1714492
|
[28] |
Stangeby P C et al 1990 Nucl. Fusion 30 1225 doi: 10.1088/0029-5515/30/7/005
|
[29] |
Boedo J A et al 1999 Rev. Sci. Instrum. 70 2997 doi: 10.1063/1.1149888
|
[30] |
Wootton A J et al 1990 Phys. Fluids B 2 2879 doi: 10.1063/1.859358
|
[31] |
Yan L W et al 2005 Rev. Sci. Instrum. 76 093506 doi: 10.1063/1.2052049
|
[32] |
Zhao K J et al 2006 Phys. Rev. Lett. 96 255004 doi: 10.1103/PhysRevLett.96.255004
|
[33] |
Yan L W et al 2007 Nucl. Fusion 47 1673 doi: 10.1088/0029-5515/47/12/005
|
[34] |
Winsor N et al 1968 Phys. Fluids 11 2448 doi: 10.1063/1.1691835
|
[35] |
Diamond P H et al 2005 Plama Phys. Control. Fusion 47 R35 doi: 10.1088/0741-3335/47/5/R01
|
[36] |
He Y et al 2022 Nucl. Fusionsubmitted doi: 10.1088/1741-4326/ac7c28
|
[37] |
Lao L L et al 1990 Nucl. Fusion 30 1035 doi: 10.1088/0029-5515/30/6/006
|
[38] |
Kim Y C et al 1979 IEEE Trans. Plasma Sci. PS-7 120 doi: 10.1109/TPS.1979.4317207
|
[39] |
Xu Y et al 2013 Nucl. Fusion 53 072001 doi: 10.1088/0029-5515/53/7/072001
|
[40] |
Shesterikov I et al 2013 Phys. Rev. Lett. 111 055006 doi: 10.1103/PhysRevLett.111.055006
|
[41] |
Liu B et al 2016 Nucl. Fusion 56 056012 doi: 10.1088/0029-5515/56/5/056012
|
[42] |
Ramisch M et al 2005 Phys. Plasmas 12 032504 doi: 10.1063/1.1857531
|
[43] |
Tokar M Z et al 2004 Phys. Rev. Lett. 92 215001 doi: 10.1103/PhysRevLett.92.215001
|
[1] | Feng WANG, Jiquan LI, Hongpeng QU, Xiaodong PENG. Gyrokinetic simulation of magnetic-island-induced electric potential vortex mode[J]. Plasma Science and Technology, 2024, 26(1): 015103. DOI: 10.1088/2058-6272/ad0d57 |
[2] | Bei LIU, Hua LIANG, Borui ZHENG. Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing[J]. Plasma Science and Technology, 2023, 25(1): 015503. DOI: 10.1088/2058-6272/ac7cb8 |
[3] | Chaoxing DAI (戴超星), Chao SONG (宋超), Xue GUO (郭雪), Wentao SUN (孙文涛), Zhiqiang GUO (郭志强), Fucheng LIU (刘富成), Yafeng HE (贺亚峰). Rotation of dust vortex in a metal saw structure in dusty plasma[J]. Plasma Science and Technology, 2020, 22(3): 34008-034008. DOI: 10.1088/2058-6272/ab580b |
[4] | Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0 |
[5] | Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95 |
[6] | Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504 |
[7] | R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10 |
[8] | LIU Xiaodong(刘晓东), FU Bao(付豹), ZHUANG Ming(庄明). The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution[J]. Plasma Science and Technology, 2014, 16(3): 288-293. DOI: 10.1088/1009-0630/16/3/21 |
[9] | ZHENG Borui (郑博睿), GAO Chao (高超), LI Yibin (李一滨), LIU Feng (刘锋), LUO Shijun (罗时钧). Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation[J]. Plasma Science and Technology, 2013, 15(4): 350-356. DOI: 10.1088/1009-0630/15/4/08 |
[10] | ZHENG Borui (郑博睿), GAO Chao(高超), LI Yibin(李一滨), LIU Feng(刘峰), LUO Shijun(罗时钧. Flow Control over a Conical Forebody by Duty-Cycle Actuations[J]. Plasma Science and Technology, 2012, 14(1): 58-63. DOI: 10.1088/1009-0630/14/1/13 |
1. | Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0 |
2. | Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476 |
3. | Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174 |
4. | ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003 |
5. | Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003 |