Citation: | Yu HE, Jun CHENG, Yuhong XU, Qian FANG, Yucai LI, Jianqiang XU, Weice WANG, Longwen YAN, Zhihui HUANG, Na WU, Min JIANG, Zhongbing SHI, Yi LIU, Wulyu ZHONG, Min XU. Impact of the mass isotope on plasma confinement and transport properties in the HL-2A tokamak[J]. Plasma Science and Technology, 2022, 24(9): 095102. DOI: 10.1088/2058-6272/ac6356 |
The impact of the mass isotope on plasma confinement and transport properties has been investigated in Ohmically-heated hydrogen and deuterium plasmas in the HL-2A tokamak. Experimental results show that under similar discharge parameters the deuterium plasma has better confinement and lower turbulent transport than the hydrogen one, and concomitantly, it is found that the magnitude of geodesic acoustic mode zonal flows, the tilting angle of the Reynolds stress tensor and the turbulence correlation lengths are all larger in the edge region of the deuterium plasma. The results provide direct experimental evidence on the importance of the nonlinear energy coupling between ambient turbulence and zonal flows for governing the isotope effects in fusion plasmas.
The authors thank to the HL-2A team for their operational assistance in the experiment. This work was partially supported by National Natural Science Foundation of China (Nos. 11820101004, 11875017, 12075079 and 51821005) and partially supported by the National Key R & D Program of China (No. 2019YFE03020000), the National Magnetic Confinement Fusion Science Program of China (No. 2018YFE0310300), the Science and Technology Plan Project in Sichuan Province of China (No. 2020YFSY0047) and Sichuan International Science and Technology Innovation Cooperation Project (No. 2021YFH0066).
[1] |
Horton W 1999 Rev. Mod. Phys. 71 735 doi: 10.1103/RevModPhys.71.735
|
[2] |
Weisen H et al 2020 J. Plasmas Phys. 86 905860501 doi: 10.1017/S0022377820000781
|
[3] |
Bessenrodt-Weberpals M et al 1993 Nucl. Fusion 33 1205 doi: 10.1088/0029-5515/33/8/I09
|
[4] |
Stroth U et al 1995 Phys. Scr. 51 655 doi: 10.1088/0031-8949/51/5/019
|
[5] |
Barnes C W et al 1996 Phys. Plasmas 3 4521 doi: 10.1063/1.872069
|
[6] |
Scott S D et al 1995 Phys. Plasmas 2 2299 doi: 10.1063/1.871253
|
[7] |
Urano H et al 2012 Phys. Rev. Lett. 109 125001 doi: 10.1103/PhysRevLett.109.125001
|
[8] |
Urano H et al 2012 Nucl. Fusion 52 114021 doi: 10.1088/0029-5515/52/11/114021
|
[9] |
Xu Y et al 2013 Phys. Rev. Lett. 110 265005 doi: 10.1103/PhysRevLett.110.265005
|
[10] |
Schneider P A et al 2017 Nucl. Fusion 57 066003 doi: 10.1088/1741-4326/aa65b3
|
[11] |
Maggi C F et al 2018 Plama Phys. Control. Fusion 60 014045 doi: 10.1088/1361-6587/aa9901
|
[12] |
Maggi C F et al 2019 Nucl. Fusion 59 076028 doi: 10.1088/1741-4326/ab1ccd
|
[13] |
Ohshima S et al 2021 Plama Phys. Control. Fusion 63 104002 doi: 10.1088/1361-6587/ac1837
|
[14] |
Liu B et al 2015 Nucl. Fusion 55 112002 doi: 10.1088/0029-5515/55/11/112002
|
[15] |
Yamada H et al 2019 Phys. Rev. Lett. 123 185001 doi: 10.1103/PhysRevLett.123.185001
|
[16] |
Tanaka K et al 2019 Nucl. Fusion 59 126040 doi: 10.1088/1741-4326/ab4237
|
[17] |
Nakata M et al 2017 Phys. Rev. Lett. 118 165002 doi: 10.1103/PhysRevLett.118.165002
|
[18] |
Angioni C et al 2018 Phys. Plasmas 25 082517 doi: 10.1063/1.5045545
|
[19] |
Bonanomi N et al 2019 Nucl. Fusion 59 126025 doi: 10.1088/1741-4326/ab3ecc
|
[20] |
Garcia J et al 2017 Nucl. Fusion 57 014007 doi: 10.1088/1741-4326/57/1/014007
|
[21] |
Manas P et al 2019 Nucl. Fusion 59 014002 doi: 10.1088/1741-4326/aaeeb5
|
[22] |
Bustos A et al 2015 Phys. Plasmas 22 012305 doi: 10.1063/1.4905637
|
[23] |
Hahm T S et al 2013 Nucl. Fusion 53 072002 doi: 10.1088/0029-5515/53/7/072002
|
[24] |
Watanabe T H et al 2011 Nucl. Fusion 51 123003 doi: 10.1088/0029-5515/51/12/123003
|
[25] |
Garbet X et al 1997 Plama Phys. Control. Fusion 39 B91 doi: 10.1088/0741-3335/39/12B/007
|
[26] |
Pusztai I et al 2011 Phys. Plasmas 18 122501 doi: 10.1063/1.3663844
|
[27] |
Chen S L et al 1965 J. Appl. Phys. 36 2363 doi: 10.1063/1.1714492
|
[28] |
Stangeby P C et al 1990 Nucl. Fusion 30 1225 doi: 10.1088/0029-5515/30/7/005
|
[29] |
Boedo J A et al 1999 Rev. Sci. Instrum. 70 2997 doi: 10.1063/1.1149888
|
[30] |
Wootton A J et al 1990 Phys. Fluids B 2 2879 doi: 10.1063/1.859358
|
[31] |
Yan L W et al 2005 Rev. Sci. Instrum. 76 093506 doi: 10.1063/1.2052049
|
[32] |
Zhao K J et al 2006 Phys. Rev. Lett. 96 255004 doi: 10.1103/PhysRevLett.96.255004
|
[33] |
Yan L W et al 2007 Nucl. Fusion 47 1673 doi: 10.1088/0029-5515/47/12/005
|
[34] |
Winsor N et al 1968 Phys. Fluids 11 2448 doi: 10.1063/1.1691835
|
[35] |
Diamond P H et al 2005 Plama Phys. Control. Fusion 47 R35 doi: 10.1088/0741-3335/47/5/R01
|
[36] |
He Y et al 2022 Nucl. Fusionsubmitted doi: 10.1088/1741-4326/ac7c28
|
[37] |
Lao L L et al 1990 Nucl. Fusion 30 1035 doi: 10.1088/0029-5515/30/6/006
|
[38] |
Kim Y C et al 1979 IEEE Trans. Plasma Sci. PS-7 120 doi: 10.1109/TPS.1979.4317207
|
[39] |
Xu Y et al 2013 Nucl. Fusion 53 072001 doi: 10.1088/0029-5515/53/7/072001
|
[40] |
Shesterikov I et al 2013 Phys. Rev. Lett. 111 055006 doi: 10.1103/PhysRevLett.111.055006
|
[41] |
Liu B et al 2016 Nucl. Fusion 56 056012 doi: 10.1088/0029-5515/56/5/056012
|
[42] |
Ramisch M et al 2005 Phys. Plasmas 12 032504 doi: 10.1063/1.1857531
|
[43] |
Tokar M Z et al 2004 Phys. Rev. Lett. 92 215001 doi: 10.1103/PhysRevLett.92.215001
|
[1] | Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a |
[2] | Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6 |
[3] | Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e |
[4] | A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f |
[5] | Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2 |
[6] | Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c |
[7] | Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940 |
[8] | ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04 |
[9] | GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02 |
[10] | WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04 |
1. | Andreev, N.E., Umarov, I.R., Popov, V.S. Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research. Bulletin of the Lebedev Physics Institute, 2023. DOI:10.3103/S1068335623190028 |
2. | Elaji, A., Bake, M.A., Tang, S. et al. Bright attosecond polarized γ-ray emission from the interaction of an intense laser pulse with non-uniform near-critical-density plasma. Chinese Journal of Physics, 2022. DOI:10.1016/j.cjph.2022.05.001 |