Citation: | Hui LIAO, Chaoqi HU, Yilin LI, Baoming REN, Xuan SUN. Experimental study of single-translated field-reversed configuration in KMAX[J]. Plasma Science and Technology, 2022, 24(9): 095103. DOI: 10.1088/2058-6272/ac64f1 |
For collisional merging field-reversed configurations (FRCs), it is desired to have both FRCs tuned to be approximately the same, as well as to optimize each FRC to have high temperature and high translation speed so as to retain most of the equilibrium flux after traveling a distance to the middle plane for merging. The present study reports the experimental study of a single-translated FRC in the KMAX-FRC device with various diagnostics, including a triple probe, a bolometer, several magnetic probe arrays, and a novel 2D internal magnetic probe array. According to the measurements conducted in the present study, a maximum toroidal magnetic field equal to ~1/3 of the external magnetic field inside the FRC separatrix radius is observed, and the typical parameters of a single-translated FRC near the device's mid-plane are ne~(2–4)×1019 m-3, Te~8 eV, Ti~5 eV, rs ~0.2 m, ls ~0.6 m and ϕp(RR) ~0.2 mWb. The 2D magnetic topology measurement revealed, for the first time, the time evolution of the overall internal magnetic fields of a single-translated FRC, and an optimized operation regime is given in the paper.
This work was supported by the National Key R&D Program of China (No. 2017YFE0301802) and National Natural Science Foundation of China (No. 12175226).
[1] |
Steinhauer L C 2011 Phys. Plasmas 18 070501 doi: 10.1063/1.3613680
|
[2] |
Tuszewski M 1988 Nucl. Fusion 28 2033 doi: 10.1088/0029-5515/28/11/008
|
[3] |
Votroubek G et al 2008 J. Fusion Energy 27 123 doi: 10.1007/s10894-007-9103-4
|
[4] |
Binderbauer M W et al 2010 Phys. Rev. Lett. 105 045003 doi: 10.1103/PhysRevLett.105.045003
|
[5] |
Gota H et al 2019 Nucl. Fusion 59 112009 doi: 10.1088/1741-4326/ab0be9
|
[6] |
Gota H et al 2017 Nucl. Fusion 57 116021 doi: 10.1088/1741-4326/aa7d7b
|
[7] |
Asai T et al 2021 Nucl. Fusion 61 096032 doi: 10.1088/1741-4326/ac189c
|
[8] |
Asai T et al 2019 Nucl. Fusion 59 056024 doi: 10.1088/1741-4326/ab0c45
|
[9] |
Degnan J H et al 2013 Nucl. Fusion 53 093003 doi: 10.1088/0029-5515/53/9/093003
|
[10] |
Gota H et al 2021 Nucl. Fusion 61 106039 doi: 10.1088/1741-4326/ac2521
|
[11] |
Conti F et al 2014 Phys. Plasmas 21 022511 doi: 10.1063/1.4866144
|
[12] |
Lin M N et al 2017 Rev. Sci. Instrum. 88 093505 doi: 10.1063/1.5001313
|
[13] |
Liu M et al 2017 Rev. Sci. Instrum. 88 053505 doi: 10.1063/1.4983801
|
[14] |
Ren B M et al 2021 Plasma Phys. Control. Fusion 63 035027 doi: 10.1088/1361-6587/abdcdd
|
[15] |
Lin M N et al 2017 Rev. Sci. Instrum. 88 083507 doi: 10.1063/1.5001313
|
[16] |
Tuszewski M and Armstrong W T 1983 Rev. Sci. Instrum. 54 1611 doi: 10.1063/1.1137320
|
[17] |
Gota H et al 2012 Rev. Sci. Instrum. 83 10D706 doi: 10.1063/1.4729497
|
[18] |
Romero-Talamás C A, Bellan P M and Hsu S C 2004 Rev. Sci. Instrum. 75 2664 doi: 10.1063/1.1771483
|
[19] |
Zhong H, Tan Y and Gao Z 2018 Rev. Sci. Instrum. 89 026101 doi: 10.1063/1.5013231
|
[20] |
Intrator T P, Siemon R E and Sieck P E 2008 Phys. Plasmas 15 042505 doi: 10.1063/1.2907165
|
[21] |
Kobayashi D and Asai T 2021 Phys. Plasmas 28 022101 doi: 10.1063/5.0026146
|
[22] |
Steinhauer L 2014 Phys. Plasmas 21 082516 doi: 10.1063/1.4894477
|
[23] |
Gota H et al 2018 Rev. Sci. Instrum. 89 10J114 doi: 10.1063/1.5036997
|
[24] |
Guo H Y et al 2004 Phys. Rev. Lett. 92 245001 doi: 10.1103/PhysRevLett.92.245001
|
[25] |
Shiokawa A and Goto S 1993 Phys. Fluids B 5 534 doi: 10.1063/1.860538
|
[26] |
Tuszewski M and Wright B L 1989 Phys. Rev. Lett. 63 2236 doi: 10.1103/PhysRevLett.63.2236
|
[27] |
Wira K and Pietrzyk Z A 1990 Phys. Fluids B 2 561 doi: 10.1063/1.859293
|
[28] |
Hewett D W 1984 Nucl. Fusion 24 349 doi: 10.1088/0029-5515/24/3/009
|
[29] |
Milroy R D and Brackbill J U 1986 Phys. Fluids 29 1184 doi: 10.1063/1.865867
|
[30] |
Milroy R D and Steinhauer L C 2008 Phys. Plasmas 15 022508 doi: 10.1063/1.2842361
|
[31] |
Omelchenko Y A 2000 Phys. Plasmas 7 1443 doi: 10.1063/1.873963
|
[1] | Shubin CHEN, Shiyu WANG, Anna ZHU, Ruixue WANG. Multiple chemical warfare agent simulant decontamination by self-driven microplasma[J]. Plasma Science and Technology, 2023, 25(11): 114002. DOI: 10.1088/2058-6272/acd32c |
[2] | Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6 |
[3] | NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11 |
[4] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[5] | JIANG Song(姜松), WEN Yiyong(文贻勇), LIU Kefu(刘克富). Yield of H 2 O 2 in Gas-Liquid Phase with Pulsed DBD[J]. Plasma Science and Technology, 2014, 16(1): 59-62. DOI: 10.1088/1009-0630/16/1/13 |
[6] | GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09 |
[7] | CHE Yao (车垚), ZHOU Jiayong (周家勇), WANG Zuwu (王祖武). Plasma Modification of Activated Carbon Fibers for Adsorption of SO 2[J]. Plasma Science and Technology, 2013, 15(10): 1047-1052. DOI: 10.1088/1009-0630/15/10/16 |
[8] | LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17 |
[9] | QI Bin (亓斌), WANG Shouyu (王守宇), ZHAO Xingyan (赵兴言), ZHU Xiaoying (祝笑颖), SUN Dapeng (孙大鹏), LIU Chen (刘晨), XU Changjiang (徐长江). The Influence of Triaxiality Parameter Υ on the Chiral Doublet Bands with (?g9/2)-1 (?h11/2)2 Configuration[J]. Plasma Science and Technology, 2012, 14(7): 595-597. DOI: 10.1088/1009-0630/14/7/06 |
[10] | ZHONG Shao-Feng (钟少锋). Surface Modification of Polypropylene Microporous Membrane by Atmospheric- Pressure Plasma Immobilization of N,N-dimethylamino ethyl methacrylate[J]. Plasma Science and Technology, 2010, 12(5): 619-627. |